
STEVE STEDMAN

EVERYTHING YOU EVER WANTED TO
KNOW ABOUT COMMON TABLE

EXPRESSIONS

SQL Server
Common Table Expressions

http://SteveStedman.com
Follow me on Twitter @SqlEmt

http://stevestedman.com/

About Steve Stedman

 DBA/Consultant/Trainer/Speaker/Writer

 Been using SQL Server since 1990 (SQL Server 1.0 for OS/2)

 Taught SQL Server classes at WWU

 SQL Server consultant

 Developer of the Database Health Project

 http://DatabaseHealth.SteveStedman.com

 Working at Emergency Reporting as CTO

 Volunteer Firefighter and EMT

 http://SteveStedman.com for more information.

http://databasehealth.stevestedman.com/

Common Table
Expressions Book

 Published May 2013

 Available at Amazon.com
and at Joes2Pros.com

 Printed and Kindle are
both available now

http://www.amazon.com/gp/product/193966618X/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=193966618X&linkCode=as2&tag=wake2wakecom
http://www.amazon.com/gp/product/193966618X/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=193966618X&linkCode=as2&tag=wake2wakecom
http://www.amazon.com/gp/product/193966618X/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=193966618X&linkCode=as2&tag=wake2wakecom
http://www.amazon.com/gp/product/193966618X/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=193966618X&linkCode=as2&tag=wake2wakecom
http://www.amazon.com/gp/product/193966618X/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=193966618X&linkCode=as2&tag=wake2wakecom
http://joes2pros.com/

Prerequisites

 To get the most value out of this presentation you
should:

 Be familiar with TSQL and able to write queries.

 Have experience with derived table queries (subqueries)

 Understand execution plans

Presentation Overview - CTE

1. What is a Common Table Expression

2. Simple CTE

3. CTE instead of a Derived Table

4. Recursive CTE

5. Multiple CTEs in a Query

6. CTE Common Uses

7. Manipulating Data with a CTE

8. CTE for Math Geeks

1. What is a Common Table Expression?

 A type of a virtual table

 Similar to the ease of a temporary table

 Sort of like a derived table

 Like a temporary named result set

 Acts like a temporary view, or a run time view

Availability of CTEs

 TRANSACT SQL feature that I wish I had learned
about 8 years ago, CTE’s were introduced in SQL
Server 2005

 All versions of SQL Server since SQL 2005 and all
variations of SQL Server support CTEs

 CTEs are also available in SQL Azure.

Why Use Common Table Expressions?

 Simplify your query – test one part at a time

 Recursion

 Computer Science: When a function calls itself

 SQL Server: When a query calls itself

 Make derived table queries more readable

 Alternative to a temp table or a table variable

CTE Syntax - WITH

 Queries start with ;WITH not SELECT

 Can be confusing if you are assuming that any query
to select data would start with a SELECT

 The scope of the CTE is confined to a single query

 A CTE just seems a little weird, until you master the
syntax

2. Simple CTE Syntax

;WITH

2. Simple CTE Syntax

;WITH expression_name

2. Simple CTE Syntax

;WITH expression_name [(column_name[,...n])]

2. Simple CTE Syntax

;WITH expression_name [(column_name[,...n])]

AS

2. Simple CTE Syntax

;WITH expression_name [(column_name[,...n])]

AS

(CTE_query_definition)

2. Simple CTE Syntax

;WITH expression_name [(column_name[,...n])]

AS

(CTE_query_definition)

SELECT <column_list>

FROM expression_name;

Demo: Simple CTE

;WITH departmentsCTE

Demo: Simple CTE

;WITH departmentsCTE (id, department, parent)

Demo: Simple CTE

;WITH departmentsCTE (id, department, parent)

AS

(

 SELECT id, department, parent

 FROM Departments

)

Demo: Simple CTE

;WITH departmentsCTE (id, department, parent)

AS

(

 SELECT id, department, parent

 FROM Departments

)

SELECT *

 FROM departmentsCTE;

Demo

Reminder

 If a CTE is not the first statement in a batch it must
be proceeded with a semicolon

3. CTE Instead of a Derived Table

 Simplifies the query – allows for clean code

 Does not improve the performance

 More value for large derived table queries in that the
TSQL is cleaner and easier to read and understand

 Eliminates accidents by duplicating derived table
queries TSQL code

Derived Table Without a CTE

SELECT q1.department, q2.department

 FROM (SELECT id, department, parent

 FROM Departments) as q1

INNER JOIN (SELECT id, department, parent

 FROM Departments) as q2

 ON q1.id = q2.parent

WHERE q1.parent is null;

Steps to Convert a Derived Table to a CTE

1. Find the first occurrence of the derived table query to
be broken out. Create a name for it and add “CTE” to
the name.

2. Copy the derived table definition, including the
parentheses, and leave the new name as the
placeholder.

3. Paste the query, copied earlier, above the SELECT
statement.

4. At the top of the query add the CTE declaration using
the same name from step 1.

5. Find all other occurrences of the same derived table
query and replace them with the CTE name.

6. Clean up the formatting and test the query.

CTE for Derived Table Re-use

;WITH deptCTE(id, department, parent) AS

(SELECT id, department, parent

 FROM Departments)

SELECT q1.department, q2.department

 FROM deptCTE q1

 INNER JOIN deptCTE q2 on q1.id = q2.parent

WHERE q1.parent is null;

CTE Instead of a Derived Table Summary

 Most derived tables can be easily converted to a CTE

 Copy and paste errors can be reduced by using a CTE

 Using a CTE doesn’t improve the performance over a
similar query written with derived tables

 For a CTE that is referenced multiple times the CTE
query is not reused, it is executed multiple times

4. Recursive CTE

 Considered recursive when the CTE references itself

 Recursion stops

 When the second SELECT produces no results

 Or specify MAXRECURSION

 Uses

 Hierarchical listing of categories

 Recursive calculations

 Much, much more…

Recursive Terminology

 Anchor Query

 Start the recursion

 Recursive Query

 The part that repeats

 MAXRECURSION

 The number of times to repeat the recursive query

 Default is 100

 MAXRECURSION of 0 implies no maximum

Recursion Overview

 Sum the numbers from 1 to 10 without recursion

55 = 10 + 9 + 8 + 7 + 6 + 5 + 4 +3 + 2 + 1

 Sum the numbers from 1 to 10 recursively

55 = 10 + (sum of numbers 1 to 9)
55 = 10 + (9 + (sum of numbers 1 to 8))
55 = 10 + (9 + (8 + (sum of numbers 1 to 7)))

Eventually we get to:

55 = 10 + (9 + (8 + (7 + (6 + (5 + (4 + (3 + (2 + 1))))))))

Example of How a Recursive CTE Works

1. Select some starting set of data from table A.

2. Join that starting set of data to table A.

3. For the results from step 2, join that to Table A.

4. Repeat until there are no more items produced by
the join.

Demo: Recursive CTE

;WITH DepartmentCTE(DeptId, Department, Parent, Level) AS

Step 1. Declare the CTE and Columns

Demo: Recursive CTE

;WITH DepartmentCTE(DeptId, Department, Parent, Level) AS

(SELECT id as DeptId, Department, parent, 0 as Level

 FROM Departments

 WHERE parent is NULL

Step 2 – Add the Anchor Query

Demo: Recursive CTE

;WITH DepartmentCTE(DeptId, Department, Parent, Level) AS

(SELECT id as DeptId, Department, parent, 0 as Level

 FROM Departments

 WHERE parent is NULL

 UNION ALL

Step 3 – Add the UNION ALL to connect to the
recursive query

Demo: Recursive CTE

;WITH DepartmentCTE(DeptId, Department, Parent, Level) AS

(SELECT id as DeptId, Department, parent, 0 as Level

 FROM Departments

 WHERE parent is NULL

 UNION ALL -- and now for the recursive part

 SELECT d.id as DeptId, d.Department, d.parent,

 DepartmentCTE.Level + 1 as Level

 FROM Departments d

 INNER JOIN DepartmentCTE

 ON DepartmentCTE.DeptId = d.parent)

Step 4 – Add the recursive Query

Demo: Recursive CTE

;WITH DepartmentCTE(DeptId, Department, Parent, Level) AS

(SELECT id as DeptId, Department, parent, 0 as Level

 FROM Departments

 WHERE parent is NULL

 UNION ALL -- and now for the recursive part

 SELECT d.id as DeptId, d.Department, d.parent,

 DepartmentCTE.Level + 1 as Level

 FROM Departments d

 INNER JOIN DepartmentCTE

 ON DepartmentCTE.DeptId = d.parent)

SELECT *

 FROM DepartmentCTE

 ORDER BY parent;

Recursive CTE with Tree Path

 Tree Path shows the
department and all
parent departments.

 Simple to do with a
recursive CTE

Demo: Recursive CTE with Tree Path

;WITH DepartmentCTE

 (DeptId, Department, Parent, Level, TreePath)

AS

Step 1. Declare the CTE and Columns

Demo: Recursive CTE with Tree Path

;WITH DepartmentCTE(DeptId, Department, Parent, Level, TreePath)
AS

(SELECT id as DeptId, Department, parent, 0 as Level,

 cast(Department as varchar(1024)) as TreePath

 FROM Departments

 WHERE parent is NULL

Step 2 – Add the Anchor Query

Demo: Recursive CTE with Tree Path

;WITH DepartmentCTE(DeptId, Department, Parent, Level, TreePath) AS

(SELECT id as DeptId, Department, parent, 0 as Level,

 cast(Department as varchar(1024)) as TreePath

 FROM Departments

 WHERE parent is NULL

 UNION ALL -- and now for the recursive part

Step 3 – Add the UNION ALL to connect to the
recursive query

Demo: Recursive CTE with Tree Path

;WITH DepartmentCTE(DeptId, Department, Parent, Level, TreePath) AS
(SELECT id as DeptId, Department, parent, 0 as Level,
 cast(Department as varchar(1024)) as TreePath
 FROM Departments
 WHERE parent is NULL

 UNION ALL -- and now for the recursive part

 SELECT d.id as DeptId, d.Department, d.parent,
 DepartmentCTE.Level + 1 as Level,
 cast(DepartmentCTE.TreePath + ' -> ' +
 d.department as varchar(1024)) as TreePath
 FROM Departments d
 INNER JOIN DepartmentCTE
 ON DepartmentCTE.DeptId = d.parent)

Step 4 – Add the recursive Query

Demo: Recursive CTE with Tree Path

;WITH DepartmentCTE(DeptId, Department, Parent, Level, TreePath) AS
(SELECT id as DeptId, Department, parent, 0 as Level,
 cast(Department as varchar(1024)) as TreePath
 FROM Departments
 WHERE parent is NULL
 UNION ALL -- and now for the recursive part
 SELECT d.id as DeptId, d.Department, d.parent,
 DepartmentCTE.Level + 1 as Level,
 cast(DepartmentCTE.TreePath + ' -> ' +
 d.department as varchar(1024)) as TreePath
 FROM Departments d
 INNER JOIN DepartmentCTE
 ON DepartmentCTE.DeptId = d.parent)
SELECT *
 FROM DepartmentCTE
 ORDER BY TreePath;

Recursive CTE with Indentation

 Simple add on to Tree
Path query

 Still using Tree Path for
sort order

 Using the SQL Server
REPLICATE function to
indent the category.

Recursive CTE with Indentation

;WITH DepartmentCTE(DeptId, Department, Parent, Level, TreePath) AS

(SELECT id as DeptId, Department, parent, 0 as Level,

 cast(Department as varchar(1024)) as TreePath

 FROM Departments

 WHERE parent is NULL

 UNION ALL -- and now for the recursive part

 SELECT d.id as DeptId, d.Department, d.parent,

 DepartmentCTE.Level + 1 as Level,

 cast(DepartmentCTE.TreePath + ' -> ' +

 d.department as varchar(1024)) as TreePath

 FROM Departments d

 INNER JOIN DepartmentCTE ON DepartmentCTE.DeptId = d.parent)

SELECT REPLICATE('. ', Level) + Department

 FROM DepartmentCTE

 ORDER BY TreePath;

Recursive CTE Performance

 Using a CTE for re-use of a derived table does not
improve performance.

 CTE Compared to a UNION ALL self join to create 6
levels in the hierarchy has a huge performance
difference, plus the CTE version is much easier to
read.

Hierarchical Query without CTE

 Many Self Joins with a UNION ALL

 Nested Cursors

 Performance Differences

 Sample Department query with self joins takes 13 times as long
as CTE. 7% compared to 93%.

5. Multiple CTE’s In A Single Query

 You can include multiple CTE's by comma seperating
them:

;WITH firstCTE (query goes here),

secondCTE (second query goes here)

SELECT * FROM firstCTE

 INNER JOIN secondCTE on

Steps to add a Second CTE

1. Add a comma at the end of the first CTE, after the
closing parentheses.

2. After the comma, on the next line, declare the name of
the new CTE.

3. After the name of the new CTE add the optional
columns declaration.

4. Add the AS keyword followed by opening and closing
parentheses.

5. Inside of the parentheses add the new CTE query.

6. Call the CTE query from the outer SELECT statement.

Demo: Multiple CTE

;WITH Fnames (Name) AS

(SELECT 'John' UNION Select 'Mary' UNION Select 'Bill'),

Minitials (initial) AS

(SELECT 'A' UNION SELECT 'B' UNION SELECT 'C'),

Lnames (Name) AS

(SELECT 'Anderson' UNION Select 'Hanson' UNION Select
'Jones')

 SELECT F.Name, M.initial, L.Name

 FROM Fnames F

 CROSS JOIN Lnames as L

 CROSS JOIN Minitials m;

Nested CTE’s

 Russian Dolls

 A Nested CTE query can only reference itself or CTE
queries declared earlier in the query.

Nested CTE Example

;WITH cte0 AS

(select 1 as num)

, cte1 AS

(SELECT * FROM cte0)

, cte2 AS

(SELECT * FROM cte1)

SELECT *

 FROM cte2;

6. Other Common CTE Uses

 Data paging on a search result (Chapter 7 in the CTE
Book)

 Information on the dates in a year

 Creating a replacement for a Numbers table

 Breaking up or parsing strings into tables
 Query String

 SQL Server connect string

 Simplifying or breaking up a huge query

Data Paging

 To achieve data paging without CTE it usually
involves selecting TOP x, then TOP 2x then top 3x,
each time taking longer and longer to get to the data
that is needed.

 Data paging can be simplified and not a challenge to
create with CTE’s.

 TSQL 2012 introduces the OFFSET and FETCH
keywords which is easier to use than a CTE for data
paging, and more efficient.

Data Paging Page 1

Data Paging Page 2

Data Paging Page 3

Demo: Data Paging

;WITH TablesAndColumns AS (
 SELECT OBJECT_NAME(sc.object_id) AS TableName,
 name AS ColumnName,
 row_number()
 OVER (ORDER BY object_name(sc.object_id))
 AS Row
 FROM sys.columns sc)
SELECT *
 FROM TablesAndColumns
 WHERE Row BETWEEN (@pageNum - 1) * @pageSize + 1
 AND @pageNum * @pageSize ;

Demo: SQL Server 2012 Data Paging

 SELECT OBJECT_NAME(sc.object_id) AS TableName,
 name AS ColumnName
 FROM sys.columns sc
 ORDER BY TableName
OFFSET (@pageNum - 1) * @pageSize ROWS
 FETCH NEXT @pageSize ROWS ONLY;

•An alternative to CTE’s if you are using SQL Server 2012

Information on the dates in a year

;WITH DatesCTE as (
 SELECT cast('2011-01-01' as date) as CalendarDate
 UNION ALL
 SELECT dateadd(day , 1, CalendarDate) AS CalendarDate
 FROM DatesCTE
 WHERE dateadd (day, 1, CalendarDate) < '2012-01-01'
)
SELECT
 CalendarDate,
…
 CalendarYear=year(CalendarDate),
DayOfWeek=datepart(weekday, CalendarDate)
FROM DatesCTE
OPTION (MAXRECURSION 366);

Creating a replacement for a Numbers table

;WITH NumbersCTE (N) AS

(SELECT 1

 UNION ALL

 SELECT 1 + N

 FROM NumbersCTE

 WHERE N < 1000

)

 SELECT N

 FROM NumbersCTE

 OPTION (MAXRECURSION 0);

Breaking up or parsing strings into tables

 Query String

 Key1=Value1&Key2=Value2&Key3=Value3

 SQL Server connect string

 server=myserver;user id=sa;password=asdfasdfasdasdffjfjfj

Simplifying huge queries

 Whether you like it or not, eventually you will end up
with a really huge query

 CTE can be used to break up the huge query into
smaller components that might be easier to
understand than the one huge query

7. Manipulating Data with a CTE

 Update

 Delete

 Insert

Update

 When it is run against the CTE the UPDATE changes
the base tables inside of the CTE.

 Update works with a single base table CTE.

 Update does work with multiple base tables as long
as only one base table is being changed.

 Update doesn’t work if there are no base tables.

Update Example – Single Base Table CTE

;WITH departmentsCTE(id, department, parent) AS

(

 SELECT id, department, parent

 FROM Departments

)

UPDATE DepartmentsCTE

 SET department = 'Bike Locks'

 WHERE id = 11;

SELECT * FROM Departments;

Update Example – No Base Table CTE

;WITH NumbersCTE (N) AS

(SELECT 1

 UNION ALL

 SELECT 1 + N FROM NumbersCTE

 WHERE N < 1000

)

UPDATE NumbersCte

 SET N = N + 1

OPTION (MAXRECURSION 1000);

 Throws an error

Delete

 The CTE syntax does not allow for a DELETE
statement to be used in any of the queries inside of
the CTE

 DELETE statement can run in an outer query.

 The DELETE statement effects the records that were
produced by the CTE

 Deleting from a CTE gets very interesting…

A DELETE from the outside query of a
CTE will delete from the table inside of the
CTE

Delete Example

WITH departmentsCTE(id, department, parent) AS

(

 SELECT id, department, parent

 FROM Departments

)

DELETE FROM departmentsCTE

 WHERE parent = 1;

Where Delete Doesn’t Work with a CTE

 A CTE with multiple base tables doesn’t support the
delete syntax.

Insert

 The insert statement can be used to insert into a CTE
when the CTE references a single base table

Insert - Demo

;WITH departmentsCTE(id, department, parent) AS

(

 SELECT id, department, parent

 FROM Departments

)

INSERT INTO DepartmentsCTE

 VALUES (99, 'xyz', 1);

9. CTE For Math Geeks

 CTE Fibonacci sequence

 CTE Factorial

Fibonacci sequence

 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 …

 By definition, the first two numbers in the Fibonacci
sequence are 0 and 1, and each subsequent number
is the sum of the previous two.

Demo: Fibonacci Sequence

;WITH Fibonacci (PrevN, N) AS

(SELECT 0, 1

 UNION ALL

 SELECT N, PrevN + N

 FROM Fibonacci

 WHERE N < 1000000000)

 SELECT PrevN as Fibo

 FROM Fibonacci

 OPTION (MAXRECURSION 0);

Factorial

 The factorial of a positive integer n, written n!, is the
product of all the positive integers from 1 up to and
including n

 Example:

1! = 1

2! = 1 * 2 = 2

3! = 1 * 2 * 3 = 6

4! = 1 * 2 * 3 * 4 = 24

Demo: Factorial

;WITH Factorial (N, Factorial) AS

(SELECT 1, cast(1 as BIGINT)

 UNION ALL

 SELECT N + 1, (N + 1) * Factorial

 FROM Factorial

 WHERE N < 20

)

 SELECT N, Factorial

 FROM Factorial

 OPTION (MAXRECURSION 0);

Frequent CTE Questions: Execution

 Does a query that JOINs a CTE to itself execute the
CTE query once or twice:

 TWICE. To confirm write a CTE, JOIN several
times, look at the execution plan.

Frequent CTE Questions: View

 How does the performance of a CTE compare to the
performance of a view?

 The question assumes that we are not doing a
recursive CTE, since you can’t do recursion with an
view.

 They have similar performance.

In Review

Unleashing Common Table Expressions

1. What is a Common Table Expression

2. Simple CTE

3. CTE instead of a Derived Table

4. Recursive CTE

5. Multiple CTEs in a Query

6. CTE Common Uses

7. Manipulating Data with a CTE

8. CTE for Math Geeks

79 |

More Information

 Follow me on Twitter

 @SqlEmt

 Visit my website

http://SteveStedman.com/

http://DatabaseHealth.SteveStedman.com

 Send me an email:

Steve@SteveStedman.com

 Download Slides and Sample TSQL

http://stevestedman.com/speaking/

http://stevestedman.com/
http://databasehealth.stevestedman.com/
mailto:Steve@SteveStedman.com
http://stevestedman.com/speaking/

Common Table Expressions Book

 Published May 2013

 Available at Amazon.com
and at Joes2Pros.com

 Printed and Kindle versions
are both available now



http://www.amazon.com/gp/product/193966618X/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=193966618X&linkCode=as2&tag=wake2wakecom
http://www.amazon.com/gp/product/193966618X/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=193966618X&linkCode=as2&tag=wake2wakecom
http://www.amazon.com/gp/product/193966618X/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=193966618X&linkCode=as2&tag=wake2wakecom
http://joes2pros.com/

STEVE STEDMAN

D E B U N K I N G C O M M O N M Y T H S A B O U T

C O M M O N T A B L E E X P R E S S I O N S

CTE – Fact or Fiction

1. CTE Executions

As a named result set, the CTE is only run
once even if it is referenced multiple times
in a query.

True or False?

FALSE The CTE is executed once for

EACH time that it is referenced in a query.

1. CTE Executions Explained

;WITH deptCTE(id, department, parent) AS

(SELECT id, department, parent

 FROM Departments)

SELECT q1.department, q2.department

 FROM deptCTE q1

 INNER JOIN deptCTE q2 on q1.id = q2.parent

 WHERE q1.parent is null;

 In this example the deptCTE is
executed twice

2. CTEs are proprietary

CTEs are proprietary to Microsoft SQL Server.

True or False?

FALSE Common Table Expressions are

supported by several major database
platforms, among them PostgreSQL, DB2,
Oracle and SQL Server, defined in SQL-99
spec

3. CTE and Hierarchical Queries

CTEs are a great way to create recursive
hierarchical queries.

True or False?

TRUE Recursive hierarchical queries are

easy to write with a CTE. CTE’s save time,
are easy to follow, and work great for
hierarchical data.

5. Database Versions

SQL Server only supports CTE’s on SQL
Server Enterprise Edition 2008R2 and
newer.

True or False?

FALSE Common Table Expressions have

been supported since SQL Server 2005 and
are available in all versions.

6. Stored Procedures and Functions

CTEs can be defined in user-defined routines,
such as functions, stored procedures,
triggers, or views.

True or False?

TRUE Common Table Expressions can be

defined and used inside of stored
procedures and functions.

7. CTEs and Nesting

CTEs can be nested and one CTE can
reference an earlier CTE.

True or False?

TRUE Common Table Expressions can be

nested. Just define multiple CTE’s and
reference an earlier CTE from a later one.

8. Indexing CTEs

Indexes can be added to CTEs to boost
performance.

True or False?

FALSE A Common Table Expression is a

temporary, "inline" view - you cannot add
an index to a CTE.

9. VIEW vs CTE

Which performs better, a non-recursive CTE
or a VIEW?

They are the same.
The big gain is the recursive CTE, which

you can’t achieve with a view.

10. CTE’s and Data Paging

CTE’s are a great way to do Data Paging for a
result grid.

True or False

It Depends…...

SQL Server 2012 has the new OFFSET and
FETCH clause on select statements, which is
easier than CTE’s. For 2005, 2008 and
2008R2 the CTE is the best option.

11. CTE’s performance

Recursive CTE’s perform the same as other
pseudo recursive solutions?

True or False

FALSE…...

12. CTE’s and TempDB

CTE’s are similar to Temp Tables or Table
Variables in their use of TempDB?

True or False

FALSE Temp Tables and Table Variables

both use TempDB, CTE’s do not…...

 See my blog posting for all the details on this one.
 http://stevestedman.com/?p=2053

 It is more than we have time to prove today.

http://stevestedman.com/?p=2053
http://stevestedman.com/?p=2053
http://stevestedman.com/?p=2053

13. Data Paging

An alternative to a CTE would be to use the
ROW_NUMBER function in the WHERE
clause to filter the results.

True or False?

FALSE ROW_NUMBER can be used to get the
current row number in the result set, but it is
a windowing function, and windowing
functions are not allowed to be used in the
WHERE clause.

More Information

 Follow me on Twitter
 @SqlEmt

 Database Health Project

http://DatabaseHealth.SteveStedman.com
 Visit my website

http://stevestedman.com/
 Send me an email:

Steve@SteveStedman.com
 Download Slides and Sample TSQL

http://stevestedman.com/speaking/

http://databasehealth.stevestedman.com/
http://stevestedman.com/
mailto:Steve@SteveStedman.com
http://stevestedman.com/speaking/

Common Table Expressions Book

 Published May 2013

 Available at Amazon.com
and at Joes2Pros.com

 Kindle version available
soon

http://www.amazon.com/gp/product/193966618X/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=193966618X&linkCode=as2&tag=wake2wakecom
http://www.amazon.com/gp/product/193966618X/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=193966618X&linkCode=as2&tag=wake2wakecom
http://www.amazon.com/gp/product/193966618X/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=193966618X&linkCode=as2&tag=wake2wakecom
http://joes2pros.com/

