Unleashing CTE'’s

O

STEVE STEDMAN

UNLEASHING COMMON TABLE
EXPRESSIONS IN SQL SERVER

‘\ saturday

http://SteveStedman.com

http://stevestedman.com/

» DBA/Consultant/Trainer/Speaker/Writer

Been using SQL Server since 1991
Taught SQL Server classes at WWU

SQL Server consultant
Writer contributing to a new SQL Server book — Tribal SQL

» Developer of the Database Health Project
http://DatabaseHealth.SteveStedman.com

» Working at Emergency Reporting as CTO
» Volunteer Firefighter and EMT
» http://SteveStedman.com for more information.

http://databasehealth.stevestedman.com/

Prerequisites

What is a Common Table Expression
Simple CTE

CTE — Subquery Re-use

Recursive CTE

Multiple CTE

CTE Common Uses

CTE for Math Geeks

CTE Fact or Fiction — Debunking

Data + Brains = Awesome

On twitter by @devNambi

Data + Brains + CTFE’s =
More Awesome

On twitter as @SqlEmt

1. Prerequisites

O

Similar to the ease of a temporary table
Like a Temporary Named Result Set

Acts like a temporary view, or a run time / inline
view, which provides temporary result during
runtime

TRANSACT SQL feature that I wish I had learned
about 7 years ago, CTE’s were introduced in SQL
Server 2005

Simplify your query — test one part at a time

Recursion
Computer Science: When a function calls itself

Make queries and subqueries more readable

Queries start with ;WITH not SELECT

Can be confusing if you are assuming that any query
to select data would start with a SELECT

;WITH expression_name [(column_name][,...n])]
AS

(CTE_query_definition)

SELECT <column_ list>
FROM expression_name;

;WITH deptCTE (id, department, parent) AS

(
SELECT id, department, parent

FROM Departments

SELECT * FROM deptCTE,;

Can be use to
Create a recursive query

Simplify a query by using a result set multiple times
Self JOIN a subquery

Each time the CTE is referenced, the CTE query is
run again

If a CTE is not the first statement in a batch it must
be proceeded with a semicolon

Simplifies the query
Does not improve the performance

More value for large subqueries in that the TSQL is
cleaner and easier to read and understand

Eliminates accidents by duplicating subquery TSQL
code

SELECT qi.department, q2.department
FROM (SELECT id, department, parent
FROM Departments) as q1
INNER JOIN (SELECT id, department, parent
FROM Departments) as q2
ON qi.id = q2.parent
WHERE qi.parent is null;

;WITH deptCTE(id, department, parent) AS
(SELECT id, department, parent
FROM Departments)
SELECT qi.department, q2.department
FROM deptCTE q1
INNER JOIN deptCTE g2 on g1.id = q2.parent
WHERE qi.parent is null;

» It is recursive when the CTE references itself

» Recursion stops when the second SELECT produces
no results

» Specity MAXRECURSION

Default is 100
MAXRECURSION of 0 implies no maximum

» Uses
Hierarchical listing of categories
Recursive calculations

;WITH DepartmentCTE(Deptld, Department, Parent, Level) AS
(SELECT id as Deptld, Department, parent, o as Level
FROM Departments
WHERE parent is NULL
UNION ALL -- and now for the recursive part
SELECT d.id as Deptld, d.Department, d.parent,
DepartmentCTE.Level + 1 as Level
FROM Departments d
INNER JOIN DepartmentCTE
ON DepartmentCTE.Deptld = d.parent)
SELECT *
FROM DepartmentCTE
ORDER BY parent;

Tree Path shows the
department and all
parent departments.

Simple to do with a
recursive CTE

Level TreePath

= = O O M MO s B W W W = = = = O

Camping

Camping -> Backpacks

Camping -= Cooking

Camping -*> Sleeping Bags

Camping -= Tents

Camping -= Tents -= 1 Person

Camping -*> Tents -> 2 Person

Camping -= Tents -= 2 Person -= Backpacking

Camping -> Tents -> 2 Person -= Family Camping

Camping -= Tents -= 2 Person -= Mountaineering

Camping -= Tents -= 2 Person -= Mountaineering -= Lightweight
Camping -> Tents -= 2 Person -» Mountaineering -= Standard
Camping -= Tents -= 2 Person -= Mountaineering -= Ultra-lightweight
Camping -> Tents -= 3 Person

Camping -= Tents -= 4 Person

Clearance

Cycle

Cycle -= Bikes

Cycle -= Helmets

Demo: Recursive CTE with Tree Path

O

;WITH DepartmentCTE(Deptld, Department, Parent, Level, TreePath) AS
(SELECT id as Deptld, Department, parent, o as Level,
cast(Department as varchar(1024)) as TreePath
FROM Departments
WHERE parent is NULL
UNION ALL -- and now for the recursive part
SELECT d.id as Deptld, d.Department, d.parent,
DepartmentCTE.Level + 1 as Level,
cast(DepartmentCTE.TreePath + '-> "' +
cast(d.department as varchar(1024))
as varchar(1024)) as TreePath
FROM Departments d
INNER JOIN DepartmentCTE
ON DepartmentCTE.Deptld = d.parent)
SELECT *
FROM DepartmentCTE
ORDER BY TreePath;

Simple add on to Tree

2l Editor 1 Results 1 Messages

Path query Department
. - 1 Camping
Still using Tree Path for , Sckpacke
sort order 3 Cooking
. 4 Sleeping Bags
Using the SQL Server s Tents
REPLICATE function to °© 1 Person
. 7 2 Person
indent the category.] Backpacking
9 Family Camping
10 Mountaineering
11 Lightweight
12 Standard
13 Ulira-lightweight
14 3 Person
15 4 Person

—l
[

Clearance

Py 1

1]

;WITH DepartmentCTE(Deptld, Department, Parent, Level, TreePath) AS
(SELECT id as Deptld, Department, parent, o0 as Level,
cast(Department as varchar(1024)) as TreePath
FROM Departments
WHERE parent is NULL
UNION ALL -- and now for the recursive part
SELECT d.id as Deptld, d.Department, d.parent,
DepartmentCTE.Level + 1 as Level,
cast(DepartmentCTE.TreePath + ' -> ' +
cast(d.department as varchar(1024))
as varchar(1024)) as TreePath
FROM Departments d
INNER JOIN DepartmentCTE
ON DepartmentCTE.Deptld = d.parent)
SELECT REPLICATEC('. ', Level) + Department
FROM DepartmentCTE
ORDER BY TreePath;

Using a CTE for re-use of a subquery does not
improve performance.

CTE Compared to a UNION ALL self join to create 6
levels in the hierarchy has a huge performance
difference, plus the CTE version is much easier to
read.

Hierarchical Query without CTE

O

-

-

ﬁﬂl&ﬂm'] Results

tﬁ Messages

o+

4 BExecution plan

Query 1: Query cost
WITH DepartmentCTIE (DeptlId, Department,

(relative to the

l:l
Par y lreePath) I

Query with self joins and

CTE Query

UNION ALL

®

Concatenation Ci
Cogst: 17 %

Query 2: Query cost

(relative to the batch):
gelect d.id az Deptld, d.department az Treel

rom Departments

E

4

i

s

You can include multiple CTE's by comma seperating
them:

sWITH firstCTE (query goes here),
secondCTE (second query goes here)

SELECT * FROM firstCTE
INNER JOIN secondCTE on

;sWITH Fnames (Name) AS

(SELECT 'John' UNION Select 'Mary' UNION Select 'Bill'),
Minitials (initial) AS

(SELECT 'A' UNION SELECT 'B' UNION SELECT 'C'),
Lnames (Name) AS

(SELECT 'Anderson' UNION Select 'Hanson' UNION Select
'Jones')

SELECT F.Name, M.initial, L.Name
FROM Fnames F

CROSS JOIN Lnames as L

CROSS JOIN Minitials m;

Data paging on a search result
Information on the dates in a year
Creating a replacement for a Numbers table

Breaking up or parsing strings into tables
Query String
SQL Server connect string

Simplifying or breaking up a huge query

To achieve data paging without CTE it usually
involves selecting TOP x, then TOP 2x then top 3x,
each time taking longer and longer to get to the data
that is needed.

Data paging can be simplified and not a challenge to
create with CTE’s.

TSQL 2012 introduces the OFFSET and FETCH
keywords which is easier to use than a CTE for data
paging, and more efficient.

Data Paging Page 1
@

TableName ColumnName RowNum
1 Departments .. department 1
) Departments ... y ,
3 Depariments parent 3
4 filestream tombstone 2073058427 oplsn _bOffset 4
5 filestream_tombstone 2073058427 oplsn_fseqno b
4] flestream tombstone 2073058427 oplsn_slotid 4]
7 filestream_ tombstone 2073058427 rowset guid 7
a flestream_ tombstone 20730584271 status a8
9 filestream_tombstone 2073058421 transaction_sequence num 9

—
-
—i
-

flestream_tombstone 20730584217 file id

Data Paging Page 2
@.

TableName ColumnName RowNum
1 filesiream_tombstone_2073058421 | filestream_value_name 11
2 filestream_tombstone_2073058421 column_guid 12
3 queue messages 1977058079 conversation_handle 13
4 queue messages 1977058079 conversation_group id 14
5 queus messages 1977058079 binary_message body 15
5] queue messages 1977058079 fragment_size 16
7 queus messages 1977058079 fragment_bitmap 17
a queue messages 1977058079 message id 18
9 queue messages 1977058079 message sequence number 19
10 queus messages 1977058079 message type id 20

Data Paging Page 3

@ :
TableName ColumnMName RowNum
1 queue_messages_1977058079 | nexi_fragment 21
2 queue_messages_1977058079 validation 22
3 queus messages 19770538079 status 23
4 queus _messages 19770538079 service contract id 24
5 queus messages 19770538079 service 1d 25
6 queue messages 1977053079 priority 26
7 queus messages 1977053079 queuing_order 27
a queus messages 2009053793 queuing _order 28
9 queue messages 2009053193 priority 29
10 queus messages 2009053793 service 1d 30

—

sWITH TablesAndColumns AS (
SELECT OBJECT_NAME(sc.object_id) AS TableName,
name AS ColumnName,
row__number()
OVER (ORDER BY object_name(sc.object_id))
AS Row
FROM sys.columns sc)
SELECT *
FROM TablesAndColumns
WHERE Row BETWEEN (@pageNum - 1) * @pageSize + 1
AND @pageNum * @pageSize ;

SELECT OBJECT_NAME(sc.object_id) AS TableName,
name AS ColumnName
FROM sys.columns sc
ORDER BY TableName
OFFSET (@pageNum - 1) * @pageSize ROWS
FETCH NEXT @pageSize ROWS ONLY;

*An alternative to CTE’s if you are using SQL Server 2012

;sWITH Dates as (
SELECT cast('2011-01-01' as date) as CalendarDate
UNION ALL
SELECT dateadd(day , 1, CalendarDate) AS CalendarDate
FROM Dates
WHERE dateadd (day, 1, CalendarDate) < '2012-01-01'
)
SELECT
CalendarDate,

CalendarYear=year(CalendarDate),
DayOfWeek=datepart(weekday, CalendarDate)
FROM Dates
OPTION (MAXRECURSION 366);

:WITH Numbers (N) AS
(SELECT 1
UNION ALL
SELECT 1 + N FROM Numbers
WHERE N <1000
)
SELECT N
FROM Numbers
OPTION (MAXRECURSION 0);

Breaking up or parsing strings into tables

O

Whether you like it or not, eventually you will end up
with a really huge query

CTE can be used to break up the huge query into
smaller components that might be easier to
understand than the one huge query

8. CTE For Math Geeks

O

0,1,1,2,3,5, 8,13, 21, 34, 55, 89, 144 ...

By definition, the first two numbers in the Fibonacci
sequence are O and 1, and each subsequent number
is the sum of the previous two.

:WITH Fibonacci (PrevN, N) AS
(SELECT o, 1

UNION ALL

SELECT N, PrevN + N

FROM Fibonacci

WHERE N < 1000000000)
SELECT PrevN as Fibo

FROM Fibonacci
OPTION (MAXRECURSION 0);

The factorial of a positive integer n, written n!, is the
product of all the positive integers from 1 up to and
including n

Example:

1! =1
2l=1%2=2
3!=1%2%3=6

4!l=1%2%3%4=124

:WITH Factorial (N, Factorial) AS
(SELECT 1, cast(1 as BIGINT)
UNION ALL
SELECT N + 1, (N + 1) * Factorial
FROM Factorial
WHERE N < 20
)
SELECT N, Factorial
FROM Factorial
OPTION (MAXRECURSION 0);

Can I use an INSERT statement inside of the CTE.

NO- you are only allowed to do SELECT statements.
But it can be used outside of the CTE in the normal

query.

Does a query that JOINs a CTE to itself execute the
CTE query once or twice:

TWICE. To confirm write a CTE, JOIN several
times, look at the execution plan.

How does the performance of a CTE compare to the
performance of a view?

The question assumes that we are not doing a
recursive CTE, since you can’t do recursion with an
View.

They have similar performance.

What is a Common Table Expression
Simple CTE

CTE — Subquery Re-use

Recursive CTE

Multiple CTE

CTE Common Uses

CTE for Math Geeks

More Information

O

» Follow me on Twitter
o @SqlEmt
» Visit my website

ohttp://SteveStedman.com/
ohttp://DatabaseHealth.SteveStedman.com

» Send me an email:

o Steve@SteveStedman.com
» Download Slides and Sample TSQL

ohttp://stevestedman.com/speaking/

http://stevestedman.com/
http://databasehealth.stevestedman.com/
mailto:Steve@SteveStedman.com
http://stevestedman.com/speaking/

CTE — Fact or Fiction
O

As a named result set, the CTE is only run
once even if it is referenced multiple times
In a query.

True or False?

FALSE The CTE is executed once for
EACH time that it is referenced in a query.

;WITH deptCTE(id, department, parent) AS
(SELECT id, department, parent
FROM Departments)
SELECT qi.department, g2.department
FROM deptCTE q1
INNER JOIN deptCTE q2 on q1.id = g2.parent
WHERE qi.parent is null;

In this example the deptCTE is
executed twice

CTEs are proprietary to Microsoft SQL Server.

True or False?

FALSE Common Table Expressions are

supported by several major database
platforms, among them PostgreSQL, DB2,
Oracle and SQL Server, defined in SQL-99

spec

CTEs are a great way to create recursive
hierarchical queries.

True or False?

| RUE Recursive hierarchical queries are
easy to write with a CTE. CTE’s save time,
are easy to follow, and work great for
hierarchical data.

SQL Server only supports CTE’s on SQL
Server Enterprise Edition 2008R2 and
newer.

True or False?

FALSE Common Table Expressions have

been supported since SQL Server 2005 and
are available in all versions.

CTEs can be defined in user-defined routines,
such as functions, stored procedures,
triggers, or views.

True or False?

1 RUK Common Table Expressions can be

defined and used inside of stored
procedures and functions.

CTEs can be nested and one CTE can
reference an earlier CTE.

True or False?

1 RUK Common Table Expressions can be

nested. Just define multiple CTE’s and
reference an earlier CTE from a later one.

Indexes can be added to CTEs to boost
performance.

True or False?

FALSE A Common Table Expression is a

temporary, "inline" view - you cannot add
an index to a CTE.

Which performs better, a non-recursive CTE
or a VIEW?

They are the same.

The big gain is the recursive CTE, which
you can’t achieve with a view.

CTE'’s are a great way to do Data Paging for a
result grid.

True or False

SQL Server 2012 has the new OFFSET and
FETCH clause on select statements, which is
easier than CTE’s. For 2005, 2008 and
2008R2 the CTE is the best option.

Recursive CTE’s perform the same as other
pseudo recursive solutions?

True or False

More Information

O

» Follow me on Twitter
o @SqlEmt

» Database Health Project

o http://DatabaseHealth.SteveStedman.com
» Visit my website

o http://stevestedman.com/
» Send me an email:

o Steve@SteveStedman.com
» Download Slides and Sample TSQL

o http://stevestedman.com/speaking/

http://databasehealth.stevestedman.com/
http://stevestedman.com/
mailto:Steve@SteveStedman.com
http://stevestedman.com/speaking/

