

Presented by Steve Stedman and Aaron Buma

Welcome
 Welcome to all those joining us remotely.

 For any questions via Google On Air Broadcasts, we will
address most of these at the end of the training.

 Training provided by Emergency Reporting

 http://EmergencyReporting.com

 Presented by Steve Stedman and Aaron Buma

http://emergencyreporting.com/

Live Broadcast
 Using Google On Air Broadcasts

 There is about a 40 to 50 second delay from live to what
you see.

 We are still learning how to properly use Google On Air
Broadcasts. Please be patient.

 Session will be available on my YouTube Channel about
an hour after it the presentation ends.

 http://SteveStedman.com/YouTube

Questions
 We will have time for questions at the end of the session.

 Q&A available via Google On Air Hangout panel. Click the
3x3 grid icon near the top right, then select Q&A to see
what people are asking, or to ask your own question.

 When you ask a question, it shows up for us about 40 to 50
seconds delayed.

Agenda
 Set Operators

 Derived Tables

 Common Table Expressions

Presented by Aaron Buma

Agenda
 UNION Types

 UNION

 UNION ALL

 INTERSECT

 EXCEPT

UNION TYPES
 UNION

 Requires same data types and number of columns

 Acts like a ‘distinct’, it won’t return duplicates

 UNION ALL

 Similar to UNION, but will return duplicates

 ORDER BY – is applied to entire results

 Up to 256 queries can be “UNION”ed together

INTERSECT and EXCEPT
 Same field and data type matching as UNION

 Only used with two tables

 INTERSECT –
 Results that only match all tables

 EXCEPT- Results from the first query,

 not matching results from the second

Presented by Steve Stedman

Derived Tables

Nested Derived Tables

Derived Table in the WHERE

Derived Table In Columns List

DANGER: will be run once for each row in the
result set. May introduce serious performance

issues.

Derived Tables

Demo

Presented by Steve Stedman

CTE Book
 Published May 2013

Today’s topic comes from Chapter 1, 2, 3, 4, 6,
7 and 9

Of

SQL Server Common Table
Expression

CTE – Agenda
 Introduction to Memory Tables and CTEs

 Simple CTE

 CTE Instead of a Derived Table

 Multiple CTE in a Query

 Data Paging

 CTEs in Stored Procedures, Functions and Views

 Introduction To Recursive CTEs

Introduction to Memory Tables and
CTEs

Chapter 1
and 2

 Virtual Tables

 Derived Table

 Sub query

 Views

 Temporary Named Result Set

 Temp Tables

 Table Variables

 Common Table Expressions

Memory Tables
SELECT *
 FROM (SELECT id,
 department,
 parent
 FROM Departments) as Dept;

CREATE VIEW [dbo].[DeptView]
AS
 SELECT id, department, parent
 FROM Departments;
GO

SELECT q1.department,
 q2.department AS subDept
 FROM DeptView q1
 INNER JOIN DeptView q2
 ON q1.id = q2.parent
 WHERE q1.parent IS NULL;

CREATE TABLE #deptTempTable (
 id int,
 department VARCHAR (200),
 parent int
);

DECLARE @deptTableVariable TABLE(
 id int,
 department VARCHAR (200),
 parent int
);

 A type of a virtual table

 Similar to the ease of a temporary table

 Sort of like a derived table

 Like a temporary named result set

 Acts like a temporary view, or a run time view

What is a CTE

Availability of CTEs
 TRANSACT SQL feature that I wish I had

learned about 10 years ago, CTE’s were
introduced in SQL Server 2005

 All versions of SQL Server since SQL 2005
and all variations of SQL Server support
CTEs

 CTEs are available in SQL Azure

Why Use Common Table
Expressions?
 Simplify your query – test one part at a time

 Recursion

 Computer Science: When a function calls itself
 SQL Server: When a query calls itself

 Make derived table queries more readable

 Alternative to a temp table or a table variable

CTE Syntax - WITH
 Queries start with WITH not SELECT

 Can be confusing if you are assuming that any query to
select data would start with a SELECT

 The scope of the CTE is confined to a single query

 A CTE just seems a little weird, until you master the syntax

Simple CTE Syntax
;WITH expression_name [(column_name[,...n])]

AS

(

 CTE_query_definition

)

SELECT <column_list>

 FROM expression_name;

Simple CTE

Demo

Reminder

 If a CTE is not the first statement in a batch it must be
proceeded with a semicolon

CTEs Instead of Derived Tables

Chapter 3

CTE Instead of a Derived Table
 Simplifies the query – allows for cleaner code

 Does not improve the performance

 More value for large derived table queries in that the TSQL

is cleaner and easier to read and understand

 Eliminates accidents by duplicating derived table queries
TSQL code

Derived Table Without a CTE
SELECT q1.department, q2.department

 FROM (SELECT id, department, parent

 FROM Departments) AS q1

INNER JOIN (SELECT id, department, parent

 FROM Departments) AS q2

 ON q1.id = q2.parent

WHERE q1.parent IS NULL;

Convert a Derived Table to a CTE
 Find the first occurrence of the derived table query to be

broken out. Create a name for it and add “CTE” to the name.
 Copy the derived table definition, including the parentheses,

and leave the new name as the placeholder.
 Paste the query, copied earlier, above the SELECT statement.
 At the top of the query add the CTE declaration using the same

name from step 1.
 Find all other occurrences of the same derived table query and

replace them with the CTE name.
 Clean up the formatting and test the query.

CTE for Derived Table Re-use
;WITH deptCTE (id, department, parent) AS

(SELECT id, department, parent

 FROM Departments)

SELECT q1.department, q2.department

 FROM deptCTE q1

 INNER JOIN deptCTE q2 on q1.id = q2.parent

WHERE q1.parent is null;

Chapter 3

Demo

CTE Instead of a Derived Table
Summary
 Most derived tables can be easily converted to a CTE

 Copy and paste errors can be reduced by using a CTE

 Using a CTE doesn’t improve the performance over a

similar query written with derived tables

 For a CTE that is referenced multiple times the CTE query
is not reused, it is executed multiple times

Multiple CTEs in a Query

Chapter 6

Multiple CTE’s In A Single Query
 You can include multiple CTE's by comma separating them:

;WITH firstCTE AS

(query goes here)

,secondCTE AS

(second query goes here)

SELECT * FROM firstCTE

 INNER JOIN secondCTE on ...

Steps to add a Second CTE
1. Add a comma at the end of the first CTE, after the closing

parentheses.
2. After the comma, on the next line, declare the name of the new

CTE.
3. After the name of the new CTE add the optional columns

declaration.
4. Add the AS keyword followed by opening and closing

parentheses.
5. Inside of the parentheses add the new CTE query.
6. Call the CTE query from the outer SELECT statement.

Demo: Multiple CTE
;WITH Fnames (Name) AS

(

 SELECT 'John' UNION SELECT 'Mary' UNION SELECT 'Bill'

)

, Lnames (Name) AS

(

 SELECT 'Smith' UNION SELECT 'Gibb' UNION SELECT 'Jones'

)

SELECT F.Name FirstName, L.Name LastName

 FROM Fnames F

 CROSS JOIN Lnames AS L;

Nested CTE’s
 Russian Dolls – матрёшки

 Pronounced Ma-Trosh-Key.

 A Nested CTE query can only reference itself or CTE
queries declared earlier in the query.

Nested CTE Example

;WITH cte0 AS

(

 SELECT 1 AS num

)

, cte1 AS

(

 SELECT num + 1 AS num

 FROM cte0

)

, cte2 AS

(

 SELECT num + 1 AS num

 FROM cte1

)

SELECT *

 FROM cte2;

Chapter 6

Demo

Data Paging With a CTE

Chapter 7

Data Paging
 To achieve data paging without CTE it usually involves

selecting TOP x, then TOP 2x then top 3x, each time taking
longer and longer to get to the data that is needed.

 Data paging can be simplified and not a challenge to create
with CTE’s.

 TSQL 2012 introduces the OFFSET and FETCH keywords
which is easier to use than a CTE for data paging, and more
efficient.

Data Paging Page 1

Data Paging Page 2

Data Paging Page 3

Demo: Data Paging
;WITH TablesAndColumns AS (
 SELECT OBJECT_NAME(sc.object_id) AS TableName,
 name AS ColumnName,
 ROW_NUMBER()
 OVER (ORDER BY object_name(sc.object_id))
 AS Row
 FROM sys.columns sc)
SELECT *
 FROM TablesAndColumns
 WHERE Row BETWEEN (@pageNum - 1) * @pageSize + 1
 AND @pageNum * @pageSize ;

Demo: SQL Server 2012 and
Beyond Data Paging
 SELECT OBJECT_NAME(sc.object_id) AS TableName,
 name AS ColumnName
 FROM sys.columns sc
 ORDER BY TableName
OFFSET (@pageNum - 1) * @pageSize ROWS
 FETCH NEXT @pageSize ROWS ONLY;

•An alternative to CTE’s for data paging if you are using SQL
Server 2012 or newer

Chapter 7

Demo

CTEs in Stored Procedures,
Functions and Views

Chapter 9

CTEs in Stored Procedures,
Functions and Views

Chapter 9

Demo

Introduction to Recursive CTEs

Chapter 4

4. Recursive CTE
 Considered recursive when the CTE references itself

 Recursion stops
 When the recursive query produces no results

 Or specify MAXRECURSION

 Uses
 Hierarchical listing of categories

 Recursive calculations

 Much, much more…

Recursion Overview
 Sum the numbers from 1 to 10 without recursion
55 = 10 + 9 + 8 + 7 + 6 + 5 + 4 +3 + 2 + 1

 Sum the numbers from 1 to 10 recursively
55 = 10 + (sum of numbers 1 to 9)
55 = 10 + (9 + (sum of numbers 1 to 8))
55 = 10 + (9 + (8 + (sum of numbers 1 to 7)))

 Eventually we get to:

55 = 10 + (9 + (8 + (7 + (6 + (5 + (4 + (3 + (2 + 1))))))))

Recursive Terminology
 Anchor Query

 Start the recursion
 One or more anchor queries

 Recursive Query
 The part that repeats
 One or more recursive queries

 MAXRECURSION
 The number of times to repeat the recursive query
 Default is 100
 MAXRECURSION of 0 implies no maximum

Demo: Recursive CTE
;WITH DepartmentCTE(DeptId, Department, Parent, Lvl)
AS

Step 1. Declare the CTE and Columns

Demo: Recursive CTE
;WITH DepartmentCTE(DeptId, Department, Parent, Lvl)

AS

(SELECT id AS DeptId, Department, parent, 0 AS Lvl

 FROM Departments

 WHERE parent IS NULL

Step 2 – Add the Anchor Query

Demo: Recursive CTE
;WITH DepartmentCTE(DeptId, Department, Parent, Lvl)

AS

(SELECT id AS DeptId, Department, parent, 0 AS Lvl

 FROM Departments

 WHERE parent IS NULL

 UNION ALL

Step 3 – Add the UNION ALL to connect to the recursive query

Demo: Recursive CTE
;WITH DepartmentCTE(DeptId, Department, Parent, Lvl)
AS
(SELECT id AS DeptId, Department, parent, 0 AS Lvl
 FROM Departments
 WHERE parent IS NULL
 UNION ALL -- and now for the recursive part
 SELECT d.id AS DeptId, d.Department, d.parent,
 DepartmentCTE.Lvl + 1 AS Lvl
 FROM Departments d
 INNER JOIN DepartmentCTE
 ON DepartmentCTE.DeptId = d.parent)

Step 4 – Add the recursive Query

Demo: Recursive CTE
;WITH DepartmentCTE(DeptId, Department, Parent, Lvl)
AS
(SELECT id AS DeptId, Department, parent, 0 AS Lvl
 FROM Departments
 WHERE parent IS NULL
 UNION ALL -- and now for the recursive part
 SELECT d.id AS DeptId, d.Department, d.parent,
 DepartmentCTE.Lvl + 1 AS Lvl
 FROM Departments d
 INNER JOIN DepartmentCTE
 ON DepartmentCTE.DeptId = d.parent)
SELECT *
 FROM DepartmentCTE
 ORDER BY parent;

Chapter 4

Demo

Recursive CTE Notes
 Recursion stops

 When the recursive query produces no results
 Or specify MAXRECURSION

 Using TSQL functions for recursion allows for 32 levels of
recursion

 Using CTE for recursion allows for 32767 levels of recursion in
the MAXRECURSION option, but much more if you set
MAXRECURSION to 0.
 I have confirmed up to 100,000,000 levels of recursion.

Download the samples and there
are many additional CTE examples

at the end of the file.

Bonus Material

Quiz 1. CTE Executions
As a named result set, the CTE is only run once even if

it is referenced multiple times in a query.

True or False?

FALSE The CTE is executed once for EACH time
that it is referenced in a query.

Quiz 1. CTE Executions Explained
;WITH deptCTE(id, department, parent) AS
(SELECT id, department, parent
 FROM Departments)
SELECT q1.department, q2.department
 FROM deptCTE q1
 INNER JOIN deptCTE q2 on q1.id = q2.parent
 WHERE q1.parent is null;

 In this example the deptCTE is executed twice

Quiz 2. CTEs are proprietary
CTEs are proprietary to Microsoft SQL Server.

True or False?

FALSE Common Table Expressions are
supported by several major database platforms,
among them PostgreSQL, DB2, Oracle and SQL
Server, defined in SQL-99 spec

Quiz 3. CTE and Hierarchical Queries
CTEs are a great way to create recursive

hierarchical queries.

True or False?

TRUE Recursive hierarchical queries are easy to
write with a CTE. CTE’s save time, are easy to
follow, and work great for hierarchical data.

Quiz 5. Database Versions
SQL Server only supports CTE’s on SQL Server

Enterprise Edition 2008R2 and newer.

True or False?

FALSE Common Table Expressions have
been supported since SQL Server 2005 and
are available in all versions.

Quiz 6. CTEs and Nesting
CTEs can be nested and one CTE can reference

an earlier CTE.
True or False?

TRUE Common Table Expressions can be
nested. Just define multiple CTE’s and
reference an earlier CTE from a later one.

Quiz 7. Indexing CTEs
Indexes can be added to CTEs to boost performance.

True or False?

FALSE A Common Table Expression is a temporary,
"inline" view - you cannot add an index to a CTE.

Quiz 8. VIEW vs CTE
Which performs better, a non-recursive CTE or a

VIEW?

They are the same.
 The big gain is the recursive CTE, which you can’t

achieve with a view.

Quiz 9. CTE’s and Data Paging
CTE’s are a great way to do Data Paging for a result grid.

True or False

It Depends…...

SQL Server 2012 and 2014 have the new OFFSET and
FETCH clause on select statements, which is easier
than CTE’s. For 2005, 2008 and 2008R2 the CTE is the
best option.

Quiz 10. CTE’s and TempDB
CTE’s are similar to Temp Tables or Table Variables in

their use of TempDB?
True or False

FALSE Temp Tables and Table Variables both
use TempDB, CTE’s do not…...

 See my blog posting for all the details on this one.
 http://stevestedman.com/?p=2053
 It is more than we have time to prove today.

http://stevestedman.com/?p=2053
http://stevestedman.com/?p=2053
http://stevestedman.com/?p=2053

Quiz 11:
 INTERSECT can be replaced with:

 An UPDATE statement

 A LEFT JOIN

 An INNER JOIN

 An INNER JOIN with DISTINCT

Quiz 12:
 EXCEPT can be replaced with:

 An UPDATE statement

 A LEFT JOIN, filtering on NULL join column

 An INNER JOIN

 An INNER JOIN with DISTINCT

Quiz 13:
 With tables that have many duplicates, which will

return more rows:

 UNION

 UNION ALL

Any Questions?
 Set Operators

 Derived Tables

 Common Table Expressions

For More Information
 Visit http://EmergencyReporting.com to find out more

about Emergency Reporting.

 Aaron on the web
 http://AaronBuma.com

 Twitter: @AaronDBuma

 Steve on the web
 http://SteveStedman.com

 twitter: @SqlEmt

http://emergencyreporting.com/
http://aaronbuma.com/
http://stevestedman.com/

Tune in next week
 Thursday 2/17 at 9:00am (pacific time).

 Topics

 Derived Table Queries (ie Subqueries)

 Correlated Sub Queries

 Sub Query Extensions (ANY, ALL, SOME)

 Exists

 OUTPUT Clause

