
Introduction to Common Table

Expressions

Presented by Steve Stedman

About the Speaker/Author
(Steve Stedman)

• Working at Emergency Reporting as CTO

• Joes2Pros
• Author of the Common Table Expression Book

• Instructor at the Joes2Pros Academy

• 23 Years of database work (Microsoft 1990-
1991)

• Developer of the Database Health Application
• http://DatabaseHealth.com

• Volunteer Firefighter and EMT

• Twitter: @SqlEmt

• Website: http://SteveStedman.com

http://databasehealth.com/
http://stevestedman.com/

 This presentation and all samples are
available at:

 http://SteveStedman.com

 Published May 2013

 Available at
Amazon.com
and at Joes2Pros.com

 Print and Kindle
versions both
available.

Today’s topic comes from Chapter 1, 2, 3, 4, 6, 7 and 9
of

SQL Server Common Table Expression

http://www.amazon.com/gp/product/193966618X/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=193966618X&linkCode=as2&tag=wake2wakecom
http://www.amazon.com/gp/product/193966618X/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=193966618X&linkCode=as2&tag=wake2wakecom
http://www.amazon.com/gp/product/193966618X/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=193966618X&linkCode=as2&tag=wake2wakecom
http://www.amazon.com/gp/product/193966618X/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=193966618X&linkCode=as2&tag=wake2wakecom
http://www.amazon.com/gp/product/193966618X/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=193966618X&linkCode=as2&tag=wake2wakecom
http://joes2pros.com/

 How many people:

◦have heard of CTEs?

◦have used CTEs?

◦have used recursive CTEs?

◦use CTEs every day?

 How many people are planning on taking the
70-461 Microsoft Exam

 Introduction to Memory Tables and CTEs

 Simple CTE

 CTE Instead of a Derived Table

 Multiple CTE in a Query

 Data Paging

 CTEs in Stored Procedures, Functions and
Views

 Introduction To Recursive CTEs

Chapter 1
and 2

 Virtual Tables
◦ Derived Table

◦ Sub query

 Views

 Temporary Named Result Set
◦ Temp Tables

◦ Table Variables

 Common Table Expressions

SELECT *
 FROM (SELECT id,
 department,
 parent
 FROM Departments) as Dept;

CREATE VIEW [dbo].[DeptView]
AS
 SELECT id, department, parent
 FROM Departments;
GO

SELECT q1.department,
 q2.department AS subDept
 FROM DeptView q1
 INNER JOIN DeptView q2
 ON q1.id = q2.parent
 WHERE q1.parent IS NULL;

CREATE TABLE #deptTempTable (
 id int,
 department VARCHAR (200),
 parent int
);

DECLARE @deptTableVariable TABLE(
 id int,
 department VARCHAR (200),
 parent int
);

 A type of a virtual table

 Similar to the ease of a temporary table

 Sort of like a derived table

 Like a temporary named result set

 Acts like a temporary view, or a run time view

 TRANSACT SQL feature that I
wish I had learned about 8
years ago, CTE’s were
introduced in SQL Server 2005

 All versions of SQL Server
since SQL 2005 and all
variations of SQL Server
support CTEs

 CTEs are available in SQL
Azure

 Simplify your query – test one part at a time

 Recursion
◦ Computer Science: When a function calls itself

◦ SQL Server: When a query calls itself

 Make derived table queries more readable

 Alternative to a temp table or a table variable

 Queries start with WITH not SELECT

 Can be confusing if you are assuming that
any query to select data would start with a
SELECT

 The scope of the CTE is confined to a single
query

 A CTE just seems a little weird, until you
master the syntax

;WITH expression_name [(column_name[,...n])]

AS

(

 CTE_query_definition

)

SELECT <column_list>

 FROM expression_name;

Demo

 If a CTE is not the first statement in a batch it
must be proceeded with a semicolon

Chapter 3

 Simplifies the query – allows for clean code

 Does not improve the performance

 More value for large derived table queries in
that the TSQL is cleaner and easier to read and
understand

 Eliminates accidents by duplicating derived
table queries TSQL code

SELECT q1.department, q2.department

 FROM (SELECT id, department, parent

 FROM Departments) as q1

INNER JOIN (SELECT id, department, parent

 FROM Departments) as q2

 ON q1.id = q2.parent

WHERE q1.parent is null;

1. Find the first occurrence of the derived table
query to be broken out. Create a name for it and
add “CTE” to the name.

2. Copy the derived table definition, including the
parentheses, and leave the new name as the
placeholder.

3. Paste the query, copied earlier, above the SELECT
statement.

4. At the top of the query add the CTE declaration
using the same name from step 1.

5. Find all other occurrences of the same derived
table query and replace them with the CTE name.

6. Clean up the formatting and test the query.

;WITH deptCTE(id, department, parent) AS

(SELECT id, department, parent

 FROM Departments)

SELECT q1.department, q2.department

 FROM deptCTE q1

 INNER JOIN deptCTE q2 on q1.id = q2.parent

WHERE q1.parent is null;

Demo

 Most derived tables can be easily converted to a
CTE

 Copy and paste errors can be reduced by using a
CTE

 Using a CTE doesn’t improve the performance
over a similar query written with derived tables

 For a CTE that is referenced multiple times the
CTE query is not reused, it is executed multiple
times

Chapter 6

 You can include multiple CTE's by comma
seperating them:

;WITH firstCTE AS

(query goes here)

,secondCTE AS

(second query goes here)

SELECT * FROM firstCTE

 INNER JOIN secondCTE on ...

1. Add a comma at the end of the first CTE, after
the closing parentheses.

2. After the comma, on the next line, declare the
name of the new CTE.

3. After the name of the new CTE add the optional
columns declaration.

4. Add the AS keyword followed by opening and
closing parentheses.

5. Inside of the parentheses add the new CTE
query.

6. Call the CTE query from the outer SELECT
statement.

;WITH Fnames (Name) AS

(

 SELECT 'John' UNION SELECT 'Mary' UNION SELECT 'Bill'

)

, Lnames (Name) AS

(

 SELECT 'Smith' UNION SELECT 'Gibb' UNION SELECT 'Jones'

)

SELECT F.Name FirstName, L.Name LastName

 FROM Fnames F

 CROSS JOIN Lnames AS L;

 Russian Dolls – матрёшки

 Pronounced Ma-Trosh-Key.

 A Nested CTE query can only reference itself or CTE
queries declared earlier in the query.

 ;WITH cte0 AS

(

 SELECT 1 AS num

)

, cte1 AS

(

 SELECT num + 1 AS num

 FROM cte0

)

, cte2 AS

(

 SELECT num + 1 AS num

 FROM cte1

)

SELECT *

 FROM cte2;

Demo

Chapter 7

 To achieve data paging without CTE it usually
involves selecting TOP x, then TOP 2x then top
3x, each time taking longer and longer to get
to the data that is needed.

 Data paging can be simplified and not a
challenge to create with CTE’s.

 TSQL 2012 introduces the OFFSET and FETCH
keywords which is easier to use than a CTE for
data paging, and more efficient.

;WITH TablesAndColumns AS (
 SELECT OBJECT_NAME(sc.object_id) AS TableName,
 name AS ColumnName,
 row_number()
 OVER (ORDER BY object_name(sc.object_id))
 AS Row
 FROM sys.columns sc)
SELECT *
 FROM TablesAndColumns
 WHERE Row BETWEEN (@pageNum - 1) * @pageSize + 1
 AND @pageNum * @pageSize ;

 SELECT OBJECT_NAME(sc.object_id) AS TableName,
 name AS ColumnName
 FROM sys.columns sc
 ORDER BY TableName
OFFSET (@pageNum - 1) * @pageSize ROWS
 FETCH NEXT @pageSize ROWS ONLY;

•An alternative to CTE’s if you are using SQL Server 2012

Demo

Chapter 9

Demo

Chapter 4

 Considered recursive when the CTE references
itself

 Recursion stops
◦ When the recursive query produces no results

◦ Or specify MAXRECURSION

 Uses
◦ Hierarchical listing of categories

◦ Recursive calculations

◦ Much, much more…

 Sum the numbers from 1 to 10 without recursion

55 = 10 + 9 + 8 + 7 + 6 + 5 + 4 +3 + 2 + 1

 Sum the numbers from 1 to 10 recursively

55 = 10 + (sum of numbers 1 to 9)

55 = 10 + (9 + (sum of numbers 1 to 8))

55 = 10 + (9 + (8 + (sum of numbers 1 to 7)))

 Eventually we get to:

55 = 10 + (9 + (8 + (7 + (6 + (5 + (4 + (3 + (2 + 1))))))))

 Anchor Query
◦ Start the recursion

◦ One or more anchor queries

 Recursive Query
◦ The part that repeats

◦ One or more recursive queries

 MAXRECURSION
◦ The number of times to repeat the recursive query

◦ Default is 100

◦ MAXRECURSION of 0 implies no maximum

;WITH DepartmentCTE(DeptId, Department, Parent, Lvl)

AS

Step 1. Declare the CTE and Columns

;WITH DepartmentCTE(DeptId, Department, Parent, Lvl)

AS

(SELECT id AS DeptId, Department, parent, 0 AS Lvl

 FROM Departments

 WHERE parent IS NULL

Step 2 – Add the Anchor Query

;WITH DepartmentCTE(DeptId, Department, Parent, Lvl)

AS

(SELECT id AS DeptId, Department, parent, 0 AS Lvl

 FROM Departments

 WHERE parent IS NULL

 UNION ALL

Step 3 – Add the UNION ALL to connect to the
recursive query

;WITH DepartmentCTE(DeptId, Department, Parent, Lvl)

AS
(SELECT id AS DeptId, Department, parent, 0 AS Lvl

 FROM Departments

 WHERE parent IS NULL

 UNION ALL -- and now for the recursive part

 SELECT d.id AS DeptId, d.Department, d.parent,

 DepartmentCTE.Lvl + 1 AS Lvl

 FROM Departments d

 INNER JOIN DepartmentCTE

 ON DepartmentCTE.DeptId = d.parent)

Step 4 – Add the recursive Query

;WITH DepartmentCTE(DeptId, Department, Parent, Lvl)

AS

(SELECT id AS DeptId, Department, parent, 0 AS Lvl

 FROM Departments

 WHERE parent IS NULL

 UNION ALL -- and now for the recursive part

 SELECT d.id AS DeptId, d.Department, d.parent,

 DepartmentCTE.Lvl + 1 AS Lvl

 FROM Departments d

 INNER JOIN DepartmentCTE

 ON DepartmentCTE.DeptId = d.parent)

SELECT *

 FROM DepartmentCTE

 ORDER BY parent;

Demo

 Recursion stops
◦ When the recursive query produces no results

◦ Or specify MAXRECURSION

 Using TSQL functions for recursion allows for
32 levels of recursion

 Using CTE for recursion allows for 32767 levels
of recursion in the MAXRECURSION option, but
much more if you set MAXRECURSION to 0.
◦ I have confirmed up to 100,000,000 levels of

recursion.

Bonus Material

 Published May 2013

 Available at
Amazon.com
and at Joes2Pros.com

 Print and Kindle
versions both
available.

http://www.amazon.com/gp/product/193966618X/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=193966618X&linkCode=as2&tag=wake2wakecom
http://www.amazon.com/gp/product/193966618X/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=193966618X&linkCode=as2&tag=wake2wakecom
http://www.amazon.com/gp/product/193966618X/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=193966618X&linkCode=as2&tag=wake2wakecom
http://www.amazon.com/gp/product/193966618X/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=193966618X&linkCode=as2&tag=wake2wakecom
http://www.amazon.com/gp/product/193966618X/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=193966618X&linkCode=as2&tag=wake2wakecom
http://joes2pros.com/

 Follow me on Twitter

◦ @SqlEmt

 Database Health Project

◦ http://DatabaseHealth.com

 Visit my website

◦ http://stevestedman.com
 Send me an email:

◦ Steve@SteveStedman.com
 Download Slides and Sample TSQL

◦ http://stevestedman.com/speaking/

http://databasehealth.stevestedman.com/
http://stevestedman.com/
mailto:Steve@SteveStedman.com
http://stevestedman.com/speaking/

