
 

 

 

Presented by Steve Stedman  

and Aaron Buma 



Welcome 
 Welcome to all those joining us remotely. 

 For any questions via Google On Air Broadcasts, we will 
address most of these at the end of the training. 

 Training provided by Emergency Reporting 

 http://EmergencyReporting.com 

 Slides and sample code are available at: 

 http://SteveStedman.com 

http://emergencyreporting.com/
http://stevestedman.com/


Welcome Viewers From 
 Bellingham, WA 

 

 

 



Live Broadcast 
 Using Google On Air Broadcasts 

 There is about a 40 to 50 second delay from live to what 
you see.  

 We are still learning how to properly use Google On Air 
Broadcasts. Please be patient. 

 Session will be available on my YouTube Channel about 
an hour after the presentation ends. 

 http://SteveStedman.com/YouTube 



Questions 
 We will have time for questions at the end of the session. 

 Q&A available via Google On Air Hangout panel. Click the 3x3 
grid icon near the top right, then select Q&A to see what people 
are asking, or to ask your own question. 

 

 

 

 When you ask a question, it shows up for us about 40 to 50 
seconds delayed. 

 

 



Agenda 
 Date and Time Functions 

 Logical Functions 

 User Defined Functions 

 

 



 

 

 

Presented by Steve Stedman 



Date/Time Functions 
GETDATE() 
DATEPART() 
DATEADD() 
DATEDIFF() 
_____FROMPARTS (2012) 
EOMONTH (2012) 



GETDATE 
 Returns the current database system timestamp as 

a datetime value without the database time zone 
offset.  

 

SELECT GETDATE(); 

 

 



DATEPART() 
 Returns an integer that represents the specified 

datepart of the specified date. 

 

SELECT DATEPART(year, GETDATE()); 

 

 Date can be time, date, smalldatetime, datetime, 
datetime2, or datetimeoffset. 



DATEADD() 
 Returns a specified date with the specified number 

interval (signed integer) added to a specified datepart 
of that date. 

SELECT DATEADD(month, 1, GETDATE()); 

 

 



DATEDIFF() 
 Returns the count (signed integer) of the specified datepart 

boundaries crossed between the specified startdate and enddate. 

 

SELECT DATEDIFF(year, '1/1/2015', GETDATE()); 

SELECT DATEDIFF(quarter, '1/1/2015', GETDATE()); 

SELECT DATEDIFF(month, '1/1/2015', GETDATE()); 

 

 



DATEFROMPARTS (2012) 
DATEFROMPARTS ( year, month, day )  

 

 Arguments 
 Year Integer expression specifying a year. 

 Month Integer expression specifying a month, from 1 to 12. 

 Day Integer expression specifying a day. 

 Always Year – Month – Day order independent of language 
or location 

 



TIMEFROMPARTS (2012) 
TIMEFROMPARTS ( hour, minute, seconds, fractions, 

precision )  
 
 Arguments 

 Hour Integer expression specifying hours. 
 Minute Integer expression specifying minutes. 
 Seconds Integer expression specifying seconds. 
 Fractions Integer expression specifying fractions. 
 Precision Integer literal specifying the precision of 

the time value to be returned. 



DATETIMEFROMPARTS (2012) 
DATETIMEFROMPARTS ( year, month, day, hour, minute, 

seconds, milliseconds )  
 
 Arguments 

 Year Integer expression specifying a year. 
 Month Integer expression specifying a month. 
 Day Integer expression specifying a day. 
 Hour Integer expression specifying hours. 
 Minute Integer expression specifying minutes. 
 Seconds Integer expression specifying seconds. 
 Milliseconds Integer expression specifying milliseconds. 



DATETIME2FROMPARTS (2012) 
DATETIME2FROMPARTS (year, month, day, hour, minute, seconds, fractions, precision) 

 
 Arguments 

 Year Integer expression specifying a year. 
 Month Integer expression specifying a month. 
 Day Integer expression specifying a day. 
 Hour Integer expression specifying hours. 
 Minute Integer expression specifying minutes. 
 Seconds Integer expression specifying seconds. 
 Fractions Integer expression specifying fractions. 
 Precision Integer literal specifying the precision of the datetime2 value to be returned. 



SMALLDATETIMEFROMPARTS (2012) 
SMALLDATETIMEFROMPARTS(year,month,day,hour,minute) 

 

 Same idea as the others…. 

 



DATETIMEOFFSETFROMPARTS (2012) 
 DATETIMEOFFSETFROMPARTS ( year, month, day, hour, minute, 

seconds, fractions, hour_offset, minute_offset, precision ) 
 

 hour_offset - Integer expression specifying the hour portion of the time 
zone offset. 

 minute_offset - Integer expression specifying the minute portion of the 
time zone offset. 

 Precision - Integer literal specifying the precision of the value to be 
returned. 
 Precision can be a value of 0 to 7 which specifies the precision of the 

fractional part of the seconds. 

 



EOMONTH (2012) 
EOMONTH ( start_date [, month_to_add ] )  

 

 Returns the last day of the month that contains the 
specified date, with an optional offset. 

 Arguments 
 start_date Date expression specifying the date for which 

to return the last day of the month. 

 month_to_add Optional integer expression specifying 
the number of months to add to start_date. 

 



Date and Time Functions 

Demo 
 



 

 

 

Presented by Steve Stedman 



Logical Functions 

CASE 

IIF (2012) 

CHOOSE (2012) 

COALESCE 



CASE 
 Evaluates a list of conditions and returns one of 

multiple possible result expressions. 

 CASE WHEN Revenue > AverageRevenue 

      THEN 'Better Than Average' 

      ELSE 'Not Better' 

       END AS Ranking 



CASE with multiple WHEN 
SELECT CASE @corners 
       WHEN 1 THEN 'point' 
       WHEN 2 THEN 'line' 
       WHEN 3 THEN 'triangle' 
       WHEN 4 THEN 'square' 
       WHEN 5 THEN 'pentagon' 
       WHEN 6 THEN 'hexagon' 
       WHEN 7 THEN 'heptagon' 
       WHEN 8 THEN 'octagon' 
       ELSE NULL 
   END; 



IIF (2012) 
 Returns one of two values, depending on whether the 

Boolean expression evaluates to true or false in SQL Server. 

 This is similar to Excel or VB versions of IIF. 

IIF(Revenue > AverageRevenue,  

    'Better Than Average',  

    'Not Better' ) AS Ranking 

 
 What does IIF stand for?  Immediate IF?  Inline IF? 



IIF Details 
 Performance very similar between IIF and CASE 

 IIF simplifies the code over using a CASE statement 

 Can be nested up to 10 levels 

 The true value and false value cannot both be NULL. 



CHOOSE (2012) 
Function that returns the item at a specific index. 

CHOOSE(index, val_1, val_2, val_3, ...) 

 If the index is greater than the number of values or less 
than 1 it returns NULL 

Easier than CASE in some examples 



CHOOSE – Example 



COALESCE 
 Similar to CASE, or CHOOSE, but returns the first 

NON NULL value. 

 Similar to ISNULL when using 2 parameters 

COALESCE([Parent], 0)  

 

 Will accommodate more than 2 fields. 

COALESCE([Parent], [AnotherField], 0)  

 



Logical Functions 

Demo 
 



 

 

 

Presented by Aaron Buma 



User Defined Functions 
Scalar 

Multiple inputs, one value output 
Table Valued 

Multiple inputs, row(s) as output 
Views 

Referencing a query as a table 



Scalar Functions - Overview 
 What it does: 

 Uses one (or many inputs) 
 To run one or more queries 
  And Return a single value 

 What is doesn’t: 
 Call non-deterministic functions (ie: GetDate()) 
 Insert, Update, Deletes to tables or views 
 Error handling 
 Get included in an execution plan (!Important) 



Functions in Views 
 Deterministic Functions ex: LEFT() 

 You can index the view 

 Non-Deterministic Functions  ex: GETDATE() 

 You cannot index the view, because the data is always 
changing 

 For UDF’s you need SCHEMABINDING at the function 
and view objects 

 



Table Value Function- Overview 
 What it does: 

 IN: Zero or Many inputs, OUT: a result set 

 Single-Statement or Multi-Statement formatting 

 What is doesn’t: 
 Call non-deterministic functions (ie: GetDate()) 

 Insert, Update, Deletes to tables or views 

 Error handling 

 Multi-statement are not included in the execution plan 



User Defined Functions 

Demo 
 



Any Questions? 
 Date and Time Functions 

 Logical Functions 

 User Defined Functions 

 

 



Tune in next week 
 Thursday 3/26 at 9:00am pacific time 

 

 Back to Basics – JOINs 
INNER, LEFT OUTER, RIGHT OUTER, SEMI JOIN, 
ANTI SEMI JOIN, LEFT OUTER with exclusion, 
RIGHT OUTER with exclusion, FULL OUTER, CROSS 
JOIN, FULL OUTER JOIN with exclusion, LATERAL 
JOINS, CROSS APPLY, combinations. 



For More Information 
 Visit http://EmergencyReporting.com to find out more 

about Emergency Reporting. 

 Aaron on the web 
 http://AaronBuma.com 

 Twitter:  @AaronDBuma 

 Steve on the web 
 http://SteveStedman.com 

 twitter: @SqlEmt 

 

http://emergencyreporting.com/
http://aaronbuma.com/
http://stevestedman.com/

