
Advanced Common Table

Expressions
Much more than just data paging

Steve Stedman, Founder/Owner of Stedman Solutions, LLC.

Moderated by Andrea Allred

2

Technical Assistance

2

Maximize your screen
with the zoom button
on the top of the
presentation window

Type your questions in
the question pane on
the right side

3
3

Thank You
Presenting Sponsors

Supporting Sponsors

Gain insights through familiar

tools while balancing monitoring

and managing user created

content across structured and

unstructured sources.

Unifying computer, storage,

networking, and virtualization, Cisco

UCS is the optimal database and

business intelligence platform for SQL

Server.

Solutions from Dell help you

monitor, manage, protect and

improve your SQL Server

environment.

www.microsoft.com www.cisco.com www.software.dell.com

Planning on attending PASS Summit 2015? Start saving

today!

• The world’s largest gathering of SQL Server & BI professionals

• Take your SQL Server skills to the next level by learning from the world’s SQL

Server experts, in over 190 technical sessions

• Over 5000 attendees, representing 2000 companies, from 52 countries,

ready to network & learn

Contact your Local or Virtual Chapter for an

additional $150 discount.
$1795
until July 12th, 2015

Steve Stedman

5

 Founder / Owner, Stedman Solutions, LLC

 PASS Chapter Leader

 Author of SQL Common Table Expressions

 SQL Saturday Speaker

@SqlEmt

https://www.linkedin.com/in/stevestedman

http://stevestedman.com/

Advanced Common Table

Expressions
Much more than just data paging

Steve Stedman, Founder/Owner of Stedman Solutions, LLC.

Speaker Bio

7

Founder/Owner Stedman Solutions, LLC
SQL Server DBA Consulting Services – http://StedmanSolutions.com

Author – SQL Server Common Table Expressions Book
Out of print, most of the content is now available on my website. http://SteveStedman.com

Database Corruption Challenge
An about weekly contest designed to help DBA’s practice fixing corruption.

Database Health Monitor
An application to monitor key metrics on your SQL Server.

@SqlEmt

/in/stevestedman

When I am not working with SQL Server I like to go boating with my family.

8

Advanced Common Table Expressions

Agenda

 Recursive Queries

 Hierarchical Recursive Data

 Manipulating Data

 Common Use Cases

 CTE Performance Considerations

 Classic Recursive Algorithms

8

9

Recursive Queries

Considered recursive when the CTE references itself

Recursion stops

 When the recursive query produces no results

 Or specify MAXRECURSION

Uses

 Hierarchical listing of categories

 Recursive calculations

 Much, much more…

9

10

Recursion Overview

Sum the numbers from 1 to 10 without recursion

55 = 10 + 9 + 8 + 7 + 6 + 5 + 4 +3 + 2 + 1

Sum the numbers from 1 to 10 recursively

55 = 10 + (sum of numbers 1 to 9)

55 = 10 + (9 + (sum of numbers 1 to 8))

55 = 10 + (9 + (8 + (sum of numbers 1 to 7)))

Eventually we get to:

55 = 10 + (9 + (8 + (7 + (6 + (5 + (4 + (3 + (2 + 1))))))))

10

11

Recursive Terminology

Anchor Query

 Start the recursion

 One or more anchor queries

Recursive Query

 The part that repeats and references the CTE by name

 One or more recursive queries

MAXRECURSION

 The number of times to repeat the recursive query

 Default is 100

 MAXRECURSION of 0 implies no maximum

11

12

Demo: Recursive CTE

;WITH DepartmentCTE(DeptId, Department, Parent, Lvl)

AS (

Step 1. Declare the CTE and Columns

13

Demo: Recursive CTE

;WITH DepartmentCTE(DeptId, Department, Parent, Lvl)

AS (

SELECT id AS DeptId, Department, parent, 0 AS Lvl

FROM Departments

WHERE parent IS NULL

Step 2 – Add the Anchor Query

14

Demo: Recursive CTE

;WITH DepartmentCTE(DeptId, Department, Parent, Lvl)

AS (

SELECT id AS DeptId, Department, parent, 0 AS Lvl

FROM Departments

WHERE parent IS NULL

UNION ALL -- and now for the recursive part

Step 3 – Add the UNION ALL to connect to the recursive query

15

Demo: Recursive CTE

;WITH DepartmentCTE(DeptId, Department, Parent, Lvl)

AS (

SELECT id AS DeptId, Department, parent, 0 AS Lvl

FROM Departments

WHERE parent IS NULL

UNION ALL -- and now for the recursive part

SELECT d.id AS DeptId, d.Department, d.parent, DepartmentCTE.Lvl + 1 AS Lvl

FROM Departments d

INNER JOIN DepartmentCTE ON DepartmentCTE.DeptId = d.parent

)

Step 4 – Add the recursive Query

16

Demo: Recursive CTE

;WITH DepartmentCTE(DeptId, Department, Parent, Lvl)

AS (

SELECT id AS DeptId, Department, parent, 0 AS Lvl

FROM Departments

WHERE parent IS NULL

UNION ALL -- and now for the recursive part

SELECT d.id AS DeptId, d.Department, d.parent, DepartmentCTE.Lvl + 1 AS Lvl

FROM Departments d

INNER JOIN DepartmentCTE ON DepartmentCTE.DeptId = d.parent

)

SELECT *

FROM DepartmentCTE

ORDER BY parent;

17

Recursive Demo

17

18

Recursive CTE Notes

Recursion stops

 When the recursive query produces no results

 Or specify MAXRECURSION

Using TSQL functions for recursion allows for 32 levels of recursion

Using CTE for recursion allows for 32767 levels of recursion in the

MAXRECURSION option, but much more if you set MAXRECURSION to 0.

 I have confirmed up to 100,000,000 levels of recursion.

19

Hierarchical Recursive Data

Recursion Made To Look Good

19

20

Hierarchy with multiple recursive queries is possible

20

21

Hierarchy with advanced formatting

21

22

Recursive Heirarchy Demo

22

23

Manipulating Data

Insert
 Inserting data into a CTE.

Update
 Find out what happens if we update a CTE.

Delete
 Does deleting from a CTE delete from the referenced tables?

23

24

Deleting From a CTE

DELETE FROM CTE;
 Are the following SQL Statements valid?

 Can you delete from a CTE?

 What does that mean?

24

;WITH CustomerCTE AS
(
SELECT *
FROM Customer
WHERE LastName like 'Williams'

)
DELETE FROM CustomerCTE;

;WITH CustomerCTE AS
(
SELECT c.*
FROM Customer AS c
INNER JOIN SalesInvoice AS si

ON si.CustomerID = c.CustomerID
WHERE c.LastName like 'Williams'

)
DELETE FROM CustomerCTE;

25

Inserting To a CTE

INSERT INTO CTE;
1. Are the following SQL Statements valid?

2. Can you INSERT INTO a CTE?

3. What does that mean?

25

;WITH CustomerCTE AS
(
SELECT *
FROM Customer
WHERE LastName like 'Stedman'

)
INSERT INTO CustomerCTE

(CustomerID,FirstName,LastName)
VALUES (99999, 'Steve', 'Stedman');

;WITH CustomerCTE AS
(
SELECT c.*
FROM Customer AS c
INNER JOIN SalesInvoice AS si

ON si.CustomerID = c.CustomerID
WHERE c.LastName like 'Stedman'

)
INSERT INTO CustomerCTE

(CustomerID, FirstName, LastName)
VALUES (99999, 'Steve', 'Stedman');

26

Updating a CTE

UPDATE CTE;
1. Are the following SQL Statements valid?

2. Can you UPDATE a CTE?

3. What does that mean?

26

;WITH CustomerCTE AS
(
SELECT c.*
FROM Customer AS c
WHERE c.LastName like 'Williams'

)
UPDATE CustomerCTE

SET LastName = 'Willie';

;WITH CustomerCTE AS
(
SELECT c.*, si.Comment
FROM Customer AS c
INNER JOIN SalesInvoice AS si

ON si.CustomerID = c.CustomerID
WHERE c.LastName like 'Williams'

)
UPDATE CustomerCTE

SET Comment = 'Some Comment',
CompanyName = 'Willies Toys';

27

INSERT, UPDATE, DELETE Notes

Insert, Update, and Delete all work against a CTE with only a single base table.

Delete does not work for any CTE with multiple base tables referenced in the

CTE query.

Insert and Update works against a CTE with multiple base tables as long as

only one base table is being udpated.

28

CTE Common Use Case 1:

Alternative to a Numbers Table

28

;WITH Numbers (N) AS

(

SELECT 1

UNION ALL

SELECT 1 + N FROM Numbers

WHERE N < 1000

)

SELECT *

FROM Numbers

OPTION (MAXRECURSION 1000);

29

CTE Common Use Case 2:

Finding Holes

29

;WITH Numbers (N) AS

(SELECT 0

UNION ALL

SELECT 1 + N FROM Numbers WHERE N < 23

), OrderHours (HourOfDay, TheCount) AS

(SELECT DATEPART(HOUR, OrderDate) as HourOfDay, COUNT(1) AS TheCount

FROM SalesInvoice

WHERE OrderDate < '02/01/2006'

GROUP BY DATEPART(HOUR, OrderDate)

)

SELECT n.N AS HourOfDay, ISNULL(oh.TheCount, 0) OrderCount

FROM OrderHours oh

RIGHT JOIN Numbers n ON n.N = oh.HourOfDay

ORDER BY TheCount ASC;

30

CTE Common Use Case 2:

Scrubbing Duplicates

30

WITH CustomerCTE AS

(

SELECT *,
ROW_NUMBER() OVER(PARTITION BY LastName,

FirstName ORDER BY CustomerID) AS DupNum

FROM Customer

)

DELETE

FROM CustomerCTE

WHERE DupNum > 1;

31

CTE Performance Considerations

Non-Recursive Performance

 Multiple references to a single CTE

 CTEs vs. Derived Tables

 Multiple CTEs in a query

Recursive Performance

 Deep Recursion

32

Multiple references to a single CTE

33

CTEs vs. Derived Tables

34

Nested CTEs

Take it to the extreme

with cte0 as
(select 1 as num)
, cte1 AS (SELECT * FROM cte0)
, cte2 AS (SELECT * FROM cte1)

Repeated from 2 to 254.

, cte255 AS (SELECT * FROM cte254)
, cte256 AS (SELECT * FROM cte255)
, cte257 AS (SELECT * FROM cte256)
select * from cte257;

35

Nested CTEs

36

Nested CTEs

37

Nested CTEs

38

Nested CTEs

39

Recursive Performance

40

Recursive Performance

41

Deep Recursion

42

Classic Recursive Algorithms

Fibonacci
By definition, the first two numbers in the Fibonacci sequence are 0 and 1, and each subsequent number is the sum of

the previous two.

Factorial
The product of an integer and all the integers below it; e.g., factorial four (4!) is equal to 24.

42

43

Advanced Common Table Expressions

Summary

 Recursive Queries

 Hierarchical Recursive Data

 Manipulating Data

 Common Use Cases

 CTE Performance Considerations

 Classic Recursive Algorithms

More Details

 All samples shown are available on my website http://SteveStedman.com

43

Questions?

Thank You for Attending
Follow @pass24hop

Share your thoughts with hashtags

#pass24hop & #sqlpass

Azure Internet of Things

A Practical Introduction to Stream Analytics

Scott McCormick

Coming Up Next …

