
Advanced Common Table

Expressions

Presented by Steve Stedman

About the Speaker/Author
(Steve Stedman)

• Joes2Pros
• Author of the Common Table Expression Book

• Instructor at the Joes2Pros Academy

• 23 Years of database work (Microsoft 1990-
1991)

• Developer of the Database Health Application
• http://DatabaseHealth.com

• Working at Emergency Reporting as CTO

• Volunteer Firefighter and EMT

• Twitter: @SqlEmt

• Website: http://SteveStedman.com

http://databasehealth.com/
http://stevestedman.com/

 Signed copy of the Joes2Pros
Common Table Expressions
book.

 How to enter: Fill out and
turn in the Speaker
Evaluation and Raffle form.

 Drawing will be held at the
end of the session.

Today’s topic comes from Chapter 4, 5, 8, 10 and 11
of

SQL Server Common Table Expression

You can download the sample databases
at Joes2Pros.com

(Find this link on the homepage)

 How many people have heard of CTEs?

 How many people have used CTEs?

 How many people have used recursive CTEs?

 How many people have deleted data with a
CTE?

 How many people use CTEs every day?

 How many people have used recursive CTEs
with multiple anchor queries?

1. Recursive CTEs.

2. Hierarchical CTEs.

3. Manipulating Data.

4. Common Use Cases.

5. CTE Performance Considerations.

Quick CTE
Review

;WITH expression_name [(column_name[,...n])]

AS

(

CTE_query_definition

)

SELECT <column_list>

FROM expression_name;

;WITH departmentsCTE (id, department, parent)

AS

(

SELECT id, department, parent

FROM Departments

)

SELECT *

FROM departmentsCTE;

Chapter 4

 Considered recursive when the CTE references
itself

 Recursion stops
◦ When the recursive query produces no results

◦ Or specify MAXRECURSION

 Uses
◦ Hierarchical listing of categories

◦ Recursive calculations

◦ Much, much more…

 Sum the numbers from 1 to 10 without recursion

55 = 10 + 9 + 8 + 7 + 6 + 5 + 4 +3 + 2 + 1

 Sum the numbers from 1 to 10 recursively

55 = 10 + (sum of numbers 1 to 9)

55 = 10 + (9 + (sum of numbers 1 to 8))

55 = 10 + (9 + (8 + (sum of numbers 1 to 7)))

 Eventually we get to:

55 = 10 + (9 + (8 + (7 + (6 + (5 + (4 + (3 + (2 + 1))))))))

 Anchor Query
◦ Start the recursion

◦ One or more anchor queries

 Recursive Query
◦ The part that repeats

◦ One or more recursive queries

 MAXRECURSION
◦ The number of times to repeat the recursive query

◦ Default is 100

◦ MAXRECURSION of 0 implies no maximum

1. Select some starting set of data from table A.

2. Join that starting set of data to table A.

3. For the results from step 2, join that to Table A.

4. Repeat until there are no more items produced
by the join.

;WITH DepartmentCTE(DeptId, Department, Parent, Lvl)

AS

Step 1. Declare the CTE and Columns

;WITH DepartmentCTE(DeptId, Department, Parent, Lvl)

AS

(SELECT id AS DeptId, Department, parent, 0 AS Lvl

FROM Departments

WHERE parent IS NULL

Step 2 – Add the Anchor Query

;WITH DepartmentCTE(DeptId, Department, Parent, Lvl)

AS

(SELECT id AS DeptId, Department, parent, 0 AS Lvl

FROM Departments

WHERE parent IS NULL

UNION ALL

Step 3 – Add the UNION ALL to connect to the
recursive query

;WITH DepartmentCTE(DeptId, Department, Parent, Lvl)

AS
(SELECT id AS DeptId, Department, parent, 0 AS Lvl

FROM Departments

WHERE parent IS NULL

UNION ALL -- and now for the recursive part

SELECT d.id AS DeptId, d.Department, d.parent,

DepartmentCTE.Lvl + 1 AS Lvl

FROM Departments d

INNER JOIN DepartmentCTE

ON DepartmentCTE.DeptId = d.parent)

Step 4 – Add the recursive Query

;WITH DepartmentCTE(DeptId, Department, Parent, Lvl)

AS

(SELECT id AS DeptId, Department, parent, 0 AS Lvl

FROM Departments

WHERE parent IS NULL

UNION ALL -- and now for the recursive part

SELECT d.id AS DeptId, d.Department, d.parent,

DepartmentCTE.Lvl + 1 AS Lvl

FROM Departments d

INNER JOIN DepartmentCTE

ON DepartmentCTE.DeptId = d.parent)

SELECT *

FROM DepartmentCTE

ORDER BY parent;

Demo

 Recursion stops
◦ When the recursive query produces no results

◦ Or specify MAXRECURSION

 Using TSQL functions for recursion allows for
32 levels of recursion

 Using CTE for recursion allows for 32767 levels
of recursion in the MAXRECURSION option, but
much more if you set MAXRECURSION to 0.
◦ I have confirmed up to 100,000,000 levels of

recursion.

Chapter 5

Chapter 5 – Recursion made to
look good – Hierarchical CTEs.

Hierarchy in Multiple Recursive
Queries possible.

Hierarchy with advanced
formatting.

Demo

Chapter 8

Chapter 8 – DELETE

DELETE FROM CTE;
1. Are the following SQL Statements valid?

2. Can you delete from a CTE?

3. What does that mean?

;WITH CustomerCTE AS
(
SELECT *
FROM Customer
WHERE LastName like 'Williams'

)
DELETE FROM CustomerCTE;

;WITH CustomerCTE AS
(
SELECT c.*
FROM Customer AS c
INNER JOIN SalesInvoice AS si

ON si.CustomerID = c.CustomerID
WHERE c.LastName like 'Williams'

)
DELETE FROM CustomerCTE;

Demo

Chapter 8 – INSERT

INSERT INTO CTE;
1. Are the following SQL Statements valid?

2. Can you INSERT INTO a CTE?

3. What does that mean?

;WITH CustomerCTE AS
(
SELECT *
FROM Customer
WHERE LastName like 'Stedman'

)
INSERT INTO CustomerCTE

(CustomerID,FirstName,LastName)
VALUES (99999, 'Steve', 'Stedman');

;WITH CustomerCTE AS
(
SELECT c.*
FROM Customer AS c
INNER JOIN SalesInvoice AS si

ON si.CustomerID = c.CustomerID
WHERE c.LastName like 'Stedman'

)
INSERT INTO CustomerCTE

(CustomerID, FirstName, LastName)
VALUES (99999, 'Steve', 'Stedman');

Demo

Chapter 8 – UPDATE

UPDATE CTE;
1. Are the following SQL Statements valid?

2. Can you UPDATE a CTE?

3. What does that mean?

;WITH CustomerCTE AS
(
SELECT c.*
FROM Customer AS c
WHERE c.LastName like 'Williams'

)
UPDATE CustomerCTE

SET LastName = 'Willie';

;WITH CustomerCTE AS
(
SELECT c.*, si.Comment
FROM Customer AS c
INNER JOIN SalesInvoice AS si

ON si.CustomerID = c.CustomerID
WHERE c.LastName like 'Williams'

)
UPDATE CustomerCTE

SET Comment = 'Some Comment',
CompanyName = 'Willies Toys';

Demo

 Insert, Update, and Delete all work against a
CTE with only a single base table.

 Delete does not work for any CTE with multiple
base tables referenced in the CTE query.

 Insert and Update works against a CTE with
multiple base tables as long as only one base
table is being udpated.

Chapter 10

Alternative to a Numbers Table.

• Demo

;WITH Numbers (N) AS

(

SELECT 1

UNION ALL

SELECT 1 + N FROM Numbers

WHERE N < 1000

)

SELECT *

FROM Numbers

OPTION (MAXRECURSION 1000);

Finding Holes.

• Demo
;WITH Numbers (N) AS

(SELECT 0

UNION ALL

SELECT 1 + N FROM Numbers

WHERE N < 23)

, OrderHours (HourOfDay, TheCount) AS

(SELECT DATEPART(HOUR, OrderDate) as HourOfDay,

COUNT(1) AS TheCount

FROM SalesInvoice

WHERE OrderDate < '02/01/2006'

GROUP BY DATEPART(HOUR, OrderDate))

SELECT n.N AS HourOfDay, ISNULL(oh.TheCount, 0) OrderCount

FROM OrderHours oh

RIGHT JOIN Numbers n ON n.N = oh.HourOfDay

ORDER BY TheCount ASC;

Scrubbing duplicates.

• Demo
WITH CustomerCTE AS

(

SELECT *,
ROW_NUMBER() OVER(PARTITION BY LastName,

FirstName ORDER BY CustomerID) AS DupNum

FROM Customer

)

DELETE

FROM CustomerCTE

WHERE DupNum > 1;

Chapter 11

 Non-Recursive Performance
◦ Multiple references to a single CTE

◦ CTEs vs. Derived Tables

◦ CTEs vs. Views

◦ Multiple CTEs in a query

 Recursive Performance
◦ Deep Recursion

 Take it to the extreme

with cte0 as
(select 1 as num)
, cte1 AS (SELECT * FROM cte0)
, cte2 AS (SELECT * FROM cte1)

Repeated from 2 to 254.

, cte255 AS (SELECT * FROM cte254)
, cte256 AS (SELECT * FROM cte255)
, cte257 AS (SELECT * FROM cte256)
select * from cte257;

Demo

 Follow me on Twitter

◦ @SqlEmt

 Database Health Project

◦ http://DatabaseHealth.com

 Visit my website

◦ http://stevestedman.com
 Send me an email:

◦ Steve@SteveStedman.com
 Download Slides and Sample TSQL

◦ http://stevestedman.com/speaking/

http://databasehealth.stevestedman.com/
http://stevestedman.com/
mailto:Steve@SteveStedman.com
http://stevestedman.com/speaking/

 Published May 2013

 Available at
Amazon.com
and at Joes2Pros.com

 Print and Kindle
versions both
available.

http://www.amazon.com/gp/product/193966618X/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=193966618X&linkCode=as2&tag=wake2wakecom
http://joes2pros.com/

Steve Stedman

Debunking common myths about
Common Table Expressions

As a named result set, the CTE is only
run once even if it is referenced
multiple times in a query.

True or False?

FALSE The CTE is executed once for
EACH time that it is referenced in a
query.

;WITH deptCTE(id, department, parent) AS
(SELECT id, department, parent

FROM Departments)
SELECT q1.department, q2.department

FROM deptCTE q1
INNER JOIN deptCTE q2 on q1.id = q2.parent
WHERE q1.parent is null;

 In this example the deptCTE is
executed twice

CTEs are proprietary to Microsoft SQL
Server.

True or False?

FALSE Common Table Expressions are
supported by several major database
platforms, among them PostgreSQL,
DB2, Oracle and SQL Server, defined in
SQL-99 spec

CTEs are a great way to create recursive
hierarchical queries.

True or False?

TRUE Recursive hierarchical queries are

easy to write with a CTE. CTE’s save
time, are easy to follow, and work
great for hierarchical data.

SQL Server only supports CTE’s on SQL
Server Enterprise Edition 2008R2 and
newer.

True or False?

FALSE Common Table Expressions have

been supported since SQL Server 2005
and are available in all versions.

CTEs can be defined in user-defined
routines, such as functions, stored
procedures, triggers, or views.

True or False?

TRUE Common Table Expressions can

be defined and used inside of stored
procedures and functions.

CTEs can be nested and one CTE can
reference an earlier CTE.

True or False?

TRUE Common Table Expressions can

be nested. Just define multiple CTE’s
and reference an earlier CTE from a
later one.

Indexes can be added to CTEs to boost
performance.

True or False?

FALSE A Common Table Expression is

a temporary, "inline" view - you
cannot add an index to a CTE.

Which performs better, a non-recursive
CTE or a VIEW?

They are the same.
◦ The big gain is the recursive CTE,
which you can’t achieve with a view.

CTE’s are a great way to do Data Paging
for a result grid.

True or False

It Depends…...

SQL Server 2012 has the new OFFSET and
FETCH clause on select statements,
which is easier than CTE’s. For 2005,
2008 and 2008R2 the CTE is the best
option.

Recursive CTE’s perform the same as
other pseudo recursive solutions?

True or False

FALSE…...

CTE’s are similar to Temp Tables or Table
Variables in their use of TempDB?

True or False

FALSE Temp Tables and Table

Variables both use TempDB, CTE’s do
not…...

 See my blog posting for all the details on this one.
◦ http://stevestedman.com/?p=2053

◦ It is more than we have time to prove today.

http://stevestedman.com/?p=2053

An alternative to a CTE would be to use the
ROW_NUMBER function in the WHERE
clause to filter the results.

True or False?

FALSE ROW_NUMBER can be used to get
the current row number in the result set,
but it is a windowing function, and
windowing functions are not allowed to
be used in the WHERE clause.

 Follow me on Twitter

◦ @SqlEmt

 Database Health Project

◦ http://DatabaseHealth.com

 Visit my website

◦ http://stevestedman.com
 Send me an email:

◦ Steve@SteveStedman.com
 Download Slides and Sample TSQL

◦ http://stevestedman.com/speaking/

http://databasehealth.stevestedman.com/
http://stevestedman.com/
mailto:Steve@SteveStedman.com
http://stevestedman.com/speaking/

 Published May 2013

 Available at
Amazon.com
and at Joes2Pros.com

 Print and Kindle
versions both
available.

http://www.amazon.com/gp/product/193966618X/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=193966618X&linkCode=as2&tag=wake2wakecom
http://www.amazon.com/gp/product/193966618X/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=193966618X&linkCode=as2&tag=wake2wakecom
http://www.amazon.com/gp/product/193966618X/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=193966618X&linkCode=as2&tag=wake2wakecom
http://www.amazon.com/gp/product/193966618X/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=193966618X&linkCode=as2&tag=wake2wakecom
http://joes2pros.com/

Thank you to all of our Sponsors!

 Platinum Sponsors

 Gold Sponsors

 Marquee Sponsor

9/28/2013 SQLSaturday #190 – Denver 201374 |

Thank you to all of our Sponsors!

 Silver Sponsors

 Bronze Sponsor

 Blog Sponsor

9/28/2013 SQLSaturday #190 – Denver 201375 |

Thank you to all of our Sponsors!

 SWAG Sponsors

9/28/2013 SQLSaturday #190 – Denver 201376 |

